NanoChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain.
Acc Chem Res. 2023 Jul 4;56(13):1815-1825. doi: 10.1021/acs.accounts.3c00174. Epub 2023 Jun 22.
ConspectusThe surface chemistry of lead halide perovskite nanocrystals (NCs) plays a major role in dictating their colloidal and structural stability as well as governing their optical properties. A deep understanding of the nature of the ligand shell, ligand-NC, and ligand-solvent interactions is therefore of utmost importance. Our recent studies have revealed that such knowledge can be harnessed following a multidisciplinary approach comprising chemical, structural, and spectroscopic analyses coupled with atomistic modeling. We show that specific surface terminations can be produced only by employing flexible and versatile syntheses that enable to work under desired conditions. In this Account, we first describe our studies aimed at synthesizing CsPbBr NCs with various surface terminations. These include CsPbBr NCs prepared under Br- and oleylamine-rich conditions, which feature a ligand shell composed of alkylammonium-Br species and a photoluminescence quantum yield (PLQY) of ∼90%. On the other hand, taking advantage of the inability of secondary amines to bind to the perovskite NCs surface, we could prepare cuboidal CsPbBr NCs bearing a Cs-oleate surface termination and a PLQY of 70% by employing oleic acid and secondary alkylamines. In the quest to identify ligands that can bind more strongly than oleates or primary alkylammonium ions to the surface of NCs already in the synthesis step, we used phosphonic acids as the sole ligands in the CsPbBr NCs synthesis, which yielded NCs with a truncated octahedron shape, high PLQY (∼100%), and a PbBr-terminated surface passivated by hydrogen phosphonates and phosphonic acid anhydride. The surface chemistry and the stability of perovskite NCs were investigated via ad-hoc postsynthesis treatments. We found, for example, that reacting oleylammonium-Br-terminated NCs with stoichiometric amounts of neutral primary alkylamines (or their conjugated acids) led to a partial replacement of oleylammonium ions with new alkylammonium ions (following a deprotonation/protonation mechanism), which resulted in a boost of the PLQY (up to 100%) and of the NCs' colloidal stability. Similar results in terms of optical properties were achieved by treating Cs-oleate-terminated NCs with alkylammonium-carboxylate or quaternary ammonium-Br (namely, didodecyldimethylammonium-Br, DDA-Br) couples. Interestingly, when the native NCs are ligand exchanged with DDA-Br, the ligand shell is then composed of species not bearing any proton. This, in turn, enabled us to study the interaction of such NCs with a variety of ligands under completely aprotic conditions wherein these DDA-Br-capped NCs were basically inert. The only exceptions were carboxylic, phosphonic, and sulfonic acids that were capable of stripping surface DDA-Br couples. As a note, most studies on CsPbBr NCs to date have focused primarily on choosing ligands with specific anchoring groups rather than on tuning the length and type of alkyl chains, as this is time-consuming and requires a large number of syntheses. Our recent developments in the computational chemistry of colloidal NCs are expected to provide a pivotal role in this direction since they can be integrated with machine learning models to investigate with greater details the ligand-NC, ligand-ligand, and ligand-solvent interactions and ultimately find optimal candidates through the prediction of surfactant properties using high-throughput data sets.
概述
卤化铅钙钛矿纳米晶体 (NCs) 的表面化学在决定其胶体和结构稳定性以及控制其光学性质方面起着主要作用。因此,深入了解配体壳、配体-NC 和配体-溶剂相互作用的性质至关重要。我们最近的研究表明,可以通过结合化学、结构和光谱分析以及原子建模的多学科方法来利用这些知识。我们表明,只有通过采用灵活且通用的合成方法,才能产生特定的表面末端,这些方法能够在所需的条件下工作。在本账目中,我们首先描述了我们旨在合成具有各种表面末端的 CsPbBr NCs 的研究。这些包括在 Br-和油胺丰富的条件下制备的 CsPbBr NCs,其配体壳由烷基铵-Br 物种组成,光致发光量子产率 (PLQY) 约为 90%。另一方面,利用仲胺无法与钙钛矿 NCs 表面结合的能力,我们可以通过使用油酸和仲烷基胺来制备具有 Cs-油酸盐表面末端和 70% PLQY 的立方 CsPbBr NCs。为了确定可以在合成步骤中比油酸盐或伯烷基铵离子更强地结合到 NCs 表面的配体,我们在 CsPbBr NCs 合成中使用了膦酸作为唯一的配体,得到了具有截角八面体形状、高 PLQY(约 100%)和由氢膦酸盐和膦酸酐钝化的 PbBr 终止表面的 NCs。通过专门的后合成处理研究了钙钛矿 NCs 的表面化学和稳定性。例如,我们发现,与等摩尔量的中性伯烷基胺(或其共轭酸)反应,导致与新的烷基铵离子部分取代油基铵离子(遵循去质子化/质子化机制),从而提高了 PLQY(高达 100%)和 NCs 的胶体稳定性。用烷基铵-羧酸盐或季铵-Br(即,二(十二烷基)二甲基溴化铵,DDA-Br)对 Cs-油酸盐封端的 NCs 进行类似的处理,在光学性能方面也取得了相似的结果。有趣的是,当将天然 NCs 与 DDA-Br 进行配体交换时,配体壳由不带有任何质子的物种组成。这反过来又使我们能够在完全无质子的条件下研究这些 DDA-Br 封端的 NCs 与各种配体的相互作用,在这些条件下,这些 DDA-Br 封端的 NCs 基本上是惰性的。唯一的例外是羧酸、膦酸和磺酸,它们能够剥离表面的 DDA-Br 偶联物。需要注意的是,迄今为止,大多数关于 CsPbBr NCs 的研究主要集中在选择具有特定锚固基团的配体上,而不是调整烷基链的长度和类型,因为这既耗时又需要大量的合成。我们在胶体 NCs 计算化学方面的最新进展有望在这方面发挥关键作用,因为它们可以与机器学习模型集成,以更详细地研究配体-NC、配体-配体和配体-溶剂相互作用,并最终通过使用高通量数据集预测表面活性剂性质来找到最佳候选物。