Toso Stefano, Dardzinski Derek, Manna Liberato, Marom Noa
Nanochemistry Department, Istituto Italiano di Tecnologia, Genova 16163, Italy.
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
ACS Nano. 2025 Feb 11;19(5):5326-5341. doi: 10.1021/acsnano.4c12713. Epub 2025 Feb 2.
Colloidal epitaxial heterostructures are nanoparticles composed of two different materials connected at an interface, which can exhibit properties different from those of their individual components. Combining dissimilar materials offers exciting opportunities to create a wide variety of functional heterostructures. However, assessing structural compatibility─the main prerequisite for epitaxial growth─is challenging when pairing complex materials with different lattice parameters and crystal structures. This complicates both the selection of target heterostructures for synthesis and the assignment of interface models when new heterostructures are obtained. Here, we demonstrate Ogre as a powerful tool to accelerate the design and characterization of colloidal heterostructures. To this end, we implemented developments tailored for the high-efficiency prediction of epitaxial interfaces between ionic/polar materials, which encompass most colloidal semiconductors. These include the use of pre-screening candidate models based on charge balance at the interface and the use of a classical potential for fast energy evaluations, with parameters automatically calculated based on the input bulk structures. These developments are validated for perovskite-based CsPbBr/PbSBr heterostructures, where Ogre produces interface models in excellent agreement with density functional theory and experiments. Furthermore, we use Ogre to rationalize the templating effect of CsPbCl on the growth of lead sulfochlorides, where perovskite seeds induce the formation of PbSCl rather than PbSCl due to better epitaxial compatibility. Finally, combining Ogre simulations with experimental data enables us to unravel the structure and composition of the hitherto unsolved CsPbBr/BiPbS interface, and to assign a structure to several other reported metal halide- and oxide-based interfaces. The Ogre package is available on GitHub or via the desktop application, available for Windows, Linux, and Mac.
胶体外延异质结构是由两种不同材料在界面处连接而成的纳米颗粒,其表现出的性质与其单个组分不同。将不同材料组合为创造各种各样的功能异质结构提供了令人兴奋的机会。然而,当将具有不同晶格参数和晶体结构的复杂材料配对时,评估结构兼容性(外延生长的主要前提)具有挑战性。这使得合成目标异质结构的选择以及获得新异质结构时界面模型的确定都变得复杂。在这里,我们展示了Ogre作为加速胶体异质结构设计和表征的强大工具。为此,我们针对离子/极性材料之间外延界面的高效预测实施了定制开发,其中包括大多数胶体半导体。这些开发包括基于界面电荷平衡使用预筛选候选模型,以及使用经典势进行快速能量评估,其参数根据输入的体结构自动计算。这些开发针对基于钙钛矿的CsPbBr/PbSBr异质结构进行了验证,其中Ogre生成的界面模型与密度泛函理论和实验结果高度吻合。此外,我们使用Ogre来合理化CsPbCl对硫氯化铅生长的模板效应,由于更好的外延兼容性,钙钛矿晶种诱导形成PbSCl而不是PbSCl。最后,将Ogre模拟与实验数据相结合使我们能够解开迄今未解决的CsPbBr/BiPbS界面的结构和组成,并为其他几个报道的基于金属卤化物和氧化物的界面确定结构。Ogre软件包可在GitHub上获取,也可通过适用于Windows、Linux和Mac的桌面应用程序获取。