Suppr超能文献

胶态半导体纳米晶体中配体工程的未来。

The Future of Ligand Engineering in Colloidal Semiconductor Nanocrystals.

机构信息

Department of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.

Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy.

出版信息

Acc Chem Res. 2021 Apr 6;54(7):1555-1564. doi: 10.1021/acs.accounts.0c00765. Epub 2021 Feb 26.

Abstract

Next-generation colloidal semiconductor nanocrystals featuring enhanced optoelectronic properties and processability are expected to arise from complete mastering of the nanocrystals' surface characteristics, attained by a rational engineering of the passivating ligands. This aspect is highly challenging, as it underlies a detailed understanding of the critical chemical processes that occur at the nanocrystal-ligand-solvent interface, a task that is prohibitive because of the limited number of nanocrystal syntheses that could be tried in the lab, where only a few dozen of the commercially available starting ligands can actually be explored. However, this challenging goal can be addressed nowadays by combining experiments with atomistic calculations and machine learning algorithms. In the last decades we indeed witnessed major advances in the development and application of computational software dedicated to the solution of the electronic structure problem as well as the expansion of tools to improve the sampling and analysis in classical molecular dynamics simulations. More recently, this progress has also embraced the integration of machine learning in computational chemistry and in the discovery of new drugs. We expect that soon this plethora of computational tools will have a formidable impact also in the field of colloidal semiconductor nanocrystals.In this Account, we present some of the most recent developments in the atomistic description of colloidal nanocrystals. In particular, we show how our group has been developing a set of programs interfaced with available computational chemistry software packages that allow the thermodynamic controlling factors in the nanocrystal surface chemistry to be captured atomistically by including explicit solvent molecules, ligands, and nanocrystal sizes that match the experiments. At the same time, we are also setting up an infrastructure to automate the efficient execution of thousands of calculations that will enable the collection of sufficient data to be processed by machine learning.To fully capture the power of these computational tools in the chemistry of colloidal nanocrystals, we decided to embed the thermodynamics behind the dissolution/precipitation of nanocrystal-ligand complexes in organic solvents and the crucial process of binding/detachment of ligands at the nanocrystal surface into a unique chemical framework. We show that formalizing this mechanism with a computational bird's eye view helps in deducing the critical factors that govern the stabilization of colloidal dispersions of nanocrystals in an organic solvent as well as the definition of those key parameters that need to be calculated to manipulate surface ligands. This approach has the ultimate goal of engineering surface ligands in silico, anticipating and driving the experiments in the lab.

摘要

下一代胶体半导体纳米晶体具有增强的光电性能和可加工性,预计将从完全掌握纳米晶体的表面特性中产生,这可以通过合理设计钝化配体来实现。这一方面极具挑战性,因为它基于对纳米晶-配体-溶剂界面上发生的关键化学过程的详细理解,而由于实验室中可以尝试的纳米晶体合成数量有限,因此这项任务是不可行的,在实验室中实际上只能探索几十种商业可用的起始配体。然而,如今通过将实验与原子计算和机器学习算法相结合,可以解决这一具有挑战性的目标。在过去的几十年中,我们确实见证了用于解决电子结构问题的计算软件的开发和应用以及用于改进经典分子动力学模拟中的采样和分析的工具的扩展方面的重大进展。最近,这一进展还包括在计算化学和新药发现中集成机器学习。我们预计,很快,大量的计算工具也将在胶体半导体纳米晶体领域产生巨大影响。在本报告中,我们介绍了胶体纳米晶体原子描述的一些最新进展。特别是,我们展示了我们的团队如何开发一系列与现有计算化学软件包接口的程序,这些程序通过包括与实验匹配的显式溶剂分子、配体和纳米晶体尺寸,可以原子级地捕捉纳米晶体表面化学中的热力学控制因素。同时,我们还建立了一个基础设施,以自动执行数千次计算,从而能够收集足够的数据,以便通过机器学习进行处理。为了充分利用这些计算工具在胶体纳米晶体化学中的力量,我们决定将纳米晶体-配体配合物在有机溶剂中的溶解/沉淀以及配体在纳米晶体表面上的结合/脱离的关键过程背后的热力学纳入到一个独特的化学框架中。我们表明,用计算的鸟瞰图形式化这个机制有助于推断出控制胶体纳米晶体在有机溶剂中分散体稳定的关键因素以及定义需要计算的关键参数,以操纵表面配体。这种方法的最终目标是在计算机上设计表面配体,预测并推动实验室中的实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be01/8028043/191d4db434d4/ar0c00765_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验