Suppr超能文献

基于 DNA 甲基化的分类器可区分肝内胰胆管肿瘤。

DNA methylation-based classifier differentiates intrahepatic pancreato-biliary tumours.

机构信息

Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Berlin Institute of Health, Berlin, Germany.

TGC Ventures UG, Berlin, Germany.

出版信息

EBioMedicine. 2023 Jul;93:104657. doi: 10.1016/j.ebiom.2023.104657. Epub 2023 Jun 21.

Abstract

BACKGROUND

Differentiating intrahepatic cholangiocarcinomas (iCCA) from hepatic metastases of pancreatic ductal adenocarcinoma (PAAD) is challenging. Both tumours have similar morphological and immunohistochemical pattern and share multiple driver mutations. We hypothesised that DNA methylation-based machine-learning algorithms may help perform this task.

METHODS

We assembled genome-wide DNA methylation data for iCCA (n = 259), PAAD (n = 431), and normal bile duct (n = 70) from publicly available sources. We split this cohort into a reference (n = 399) and a validation set (n = 361). Using the reference cohort, we trained three machine learning models to differentiate between these entities. Furthermore, we validated the classifiers on the technical validation set and used an internal cohort (n = 72) to test our classifier.

FINDINGS

On the validation cohort, the neural network, support vector machine, and the random forest classifiers reached accuracies of 97.68%, 95.62%, and 96.5%, respectively. Filtering by anomaly detection and thresholds improved the accuracy to 99.07% (37 samples excluded by filtering), 96.22% (17 samples excluded), and 100% (44 samples excluded) for the neural network, support vector machine and random forest, respectively. Because of best balance between accuracy and number of predictable cases we tested the neural network with applied filters on the in-house cohort, obtaining an accuracy of 95.45%.

INTERPRETATION

We developed a classifier that can differentiate between iCCAs, intrahepatic metastases of a PAAD, and normal bile duct tissue with high accuracy. This tool can be used for improving the diagnosis of pancreato-biliary cancers of the liver.

FUNDING

This work was supported by Berlin Institute of Health (JCS Program), DKTK Berlin (Young Investigator Grant 2022), German Research Foundation (493697503 and 314905040 - SFB/TRR 209 Liver Cancer B01), and German Cancer Aid (70113922).

摘要

背景

肝内胆管细胞癌(iCCA)与胰腺导管腺癌(PAAD)肝转移的鉴别具有挑战性。这两种肿瘤具有相似的形态学和免疫组织化学模式,并具有多个共同的驱动突变。我们假设基于 DNA 甲基化的机器学习算法可能有助于完成这项任务。

方法

我们从公开来源汇集了 iCCA(n=259)、PAAD(n=431)和正常胆管(n=70)的全基因组 DNA 甲基化数据。我们将该队列分为参考队列(n=399)和验证队列(n=361)。使用参考队列,我们训练了三个机器学习模型来区分这些实体。此外,我们在技术验证队列上验证了分类器,并在内部队列(n=72)上进行了测试。

结果

在验证队列中,神经网络、支持向量机和随机森林分类器的准确率分别达到 97.68%、95.62%和 96.5%。通过异常检测和阈值过滤,神经网络、支持向量机和随机森林的准确率分别提高到 99.07%(37 个样本被过滤排除)、96.22%(17 个样本被过滤排除)和 100%(44 个样本被过滤排除)。由于准确性和可预测病例数量之间的最佳平衡,我们在内部队列上测试了应用过滤器的神经网络,得到了 95.45%的准确率。

解释

我们开发了一种分类器,可以高精度地区分 iCCA、PAAD 的肝内转移和正常胆管组织。该工具可用于提高肝胆癌的诊断。

资助

这项工作得到了柏林健康研究所(JCS 计划)、DKTK 柏林(2022 年青年研究员资助)、德国研究基金会(493697503 和 314905040-SFB/TRR 209 肝癌 B01)和德国癌症援助协会(70113922)的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d652/10333440/4e37b4a15a92/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验