Benfatto Salvatore, Sill Martin, Jones David T W, Pfister Stefan M, Sahm Felix, von Deimling Andreas, Capper David, Hovestadt Volker
Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
Nat Commun. 2025 Feb 20;16(1):1787. doi: 10.1038/s41467-025-57078-0.
We have recently developed a machine learning classifier that enables fast, accurate, and affordable classification of brain tumors based on genome-wide DNA methylation profiles that is widely employed in the clinic. Neuro-oncology research would benefit greatly from understanding the underlying artificial intelligence decision process, which currently remains unclear. Here, we describe an interpretable framework to explain the classifier's decisions. We show that functional genomic regions of various sizes are predominantly employed to distinguish between different tumor classes, ranging from enhancers and CpG islands to large-scale heterochromatic domains. We detect a high degree of genomic redundancy, with many genes distinguishing individual tumor classes, explaining the robustness of the classifier and revealing potential targets for further therapeutic investigation. We anticipate that our resource will build up trust in machine learning in clinical settings, foster biomarker discovery and development of compact point-of-care assays, and enable further epigenome research of brain tumors. Our interpretable framework is accessible to the research community via an interactive web application ( https://hovestadtlab.shinyapps.io/shinyMNP/ ).
我们最近开发了一种机器学习分类器,它能够基于临床广泛应用的全基因组DNA甲基化谱,对脑肿瘤进行快速、准确且经济实惠的分类。神经肿瘤学研究将从理解潜在的人工智能决策过程中受益匪浅,而目前该过程仍不清楚。在此,我们描述了一个可解释的框架来解释分类器的决策。我们表明,各种大小的功能基因组区域主要用于区分不同的肿瘤类别,范围从增强子和CpG岛到大规模异染色质结构域。我们检测到高度的基因组冗余,许多基因可区分个体肿瘤类别,这解释了分类器的稳健性,并揭示了进一步治疗研究的潜在靶点。我们预计,我们的资源将在临床环境中建立对机器学习的信任,促进生物标志物的发现和紧凑型即时检测分析的开发,并推动脑肿瘤的进一步表观基因组研究。研究社区可通过交互式网络应用程序(https://hovestadtlab.shinyapps.io/shinyMNP/)访问我们的可解释框架。