Suppr超能文献

一种细胞色素 P450 体系在红球菌 JS3073 中引发 4-硝基苯甲醚的降解。

A cytochrome P450 system initiates 4-nitroanisole degradation in Rhodococcus sp. strain JS3073.

机构信息

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL 32514-5751, USA.

出版信息

J Hazard Mater. 2023 Sep 15;458:131886. doi: 10.1016/j.jhazmat.2023.131886. Epub 2023 Jun 17.

Abstract

Nitroanisoles are used widely as synthetic intermediates and explosives. Although bacteria have been reported to degrade 4-nitroanisole (4NA) under aerobic conditions, the key enzymes and the catalytic mechanism have remained elusive. Rhodococcus sp. strain JS3073 was isolated for its ability to grow on 4NA as the sole carbon and energy source. In this study, whole cell biotransformation experiments indicated that 4NA degradation is initiated by O-demethylation to form 4-nitrophenol (PNP), which undergoes subsequent degradation by a previously established pathway involving formation of 1,2,4-benzenetriol and release of nitrite. Based on comparative transcriptomics and heterologous expression, a novel three-component cytochrome P450 system encoded by pnaABC initiates the O-demethylation of 4NA to yield formaldehyde and PNP. The pnaABC genes encode a phthalate dioxygenase type reductase (PnaA), a cytochrome P450 monooxygenase (PnaB), and an EthD family protein (PnaC) with putative function similar to ferredoxins. This unusual P450 system also has a broad substrate specificity for nitroanisole derivatives. Sequence analysis of PnaAB revealed high identity with multiple self-sufficient P450s of the CYP116B subfamily. The findings revealed the molecular basis of the catabolic pathway for 4NA initiated by an unusual O-demethylase PnaABC and extends the understanding of the diversity among P450s and their electron transport chains.

摘要

硝基苯甲醚被广泛用作合成中间体和爆炸物。尽管已经有报道称细菌可以在有氧条件下降解 4-硝基苯甲醚(4NA),但关键酶和催化机制仍不清楚。Rhodococcus sp. 菌株 JS3073 因其能够以 4NA 作为唯一的碳源和能源进行生长而被分离出来。在本研究中,全细胞生物转化实验表明 4NA 的降解是由 O-去甲基化引发的,生成 4-硝基苯酚(PNP),随后通过先前建立的途径进行降解,涉及到 1,2,4-苯三醇的形成和亚硝酸盐的释放。基于比较转录组学和异源表达,由 pnaABC 编码的新型三组分细胞色素 P450 系统启动 4NA 的 O-去甲基化,生成甲醛和 PNP。pnaABC 基因编码邻苯二甲酸二氧酶型还原酶(PnaA)、细胞色素 P450 单加氧酶(PnaB)和具有类似铁氧还蛋白功能的 EthD 家族蛋白(PnaC)。这个不寻常的 P450 系统对硝基苯甲醚衍生物也具有广泛的底物特异性。PnaAB 的序列分析表明与 CYP116B 亚家族的多个自给自足的 P450 具有高度的同一性。这些发现揭示了由不寻常的 O-去甲基酶 PnaABC 启动的 4NA 代谢途径的分子基础,并扩展了对 P450 及其电子传递链多样性的认识。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验