Department of Microbiology and Immunology, Life Sciences Institute, BioProducts Institute, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25771-25778. doi: 10.1073/pnas.1916349117. Epub 2020 Sep 28.
Cytochrome P450 enzymes have tremendous potential as industrial biocatalysts, including in biological lignin valorization. Here, we describe P450s that catalyze the -demethylation of lignin-derived guaiacols with different ring substitution patterns. Bacterial strains EP4 and RHA1 both utilized alkylguaiacols as sole growth substrates. Transcriptomics of EP4 grown on 4-propylguaiacol (4PG) revealed the up-regulation of , encoding a CYP255A1 family P450, and the genes, previously shown to encode a -cleavage pathway responsible for 4-alkylphenol catabolism. The function of the homologous pathway in RHA1 was confirmed: Deletion mutants of and , encoding the -cleavage alkylcatechol dioxygenase, grew on guaiacol but not 4PG. By contrast, deletion mutants of and , encoding a CYP255A2 family P450 and an -cleavage pathway enzyme, respectively, grew on 4-propylguaiacol but not guaiacol. CYP255A1 from EP4 catalyzed the -demethylation of 4-alkylguaiacols to 4-alkylcatechols with the following apparent specificities (/): propyl > ethyl > methyl > guaiacol. This order largely reflected AgcA's binding affinities for the different guaiacols and was the inverse of GcoA's specificities. The biocatalytic potential of AgcA was demonstrated by the ability of EP4 to grow on lignin-derived products obtained from the reductive catalytic fractionation of corn stover, depleting alkylguaiacols and alkylphenols. By identifying related P450s with complementary specificities for lignin-relevant guaiacols, this study facilitates the design of these enzymes for biocatalytic applications. We further demonstrated that the metabolic fate of the guaiacol depends on its substitution pattern, a finding that has significant implications for engineering biocatalysts to valorize lignin.
细胞色素 P450 酶在工业生物催化中具有巨大的潜力,包括在生物木质素增值方面。在这里,我们描述了催化木质素衍生愈创木酚不同环取代模式的 -去甲基化的 P450。细菌菌株 EP4 和 RHA1 都将烷基愈创木酚用作唯一的生长底物。EP4 在 4-丙基愈创木酚(4PG)上生长的转录组学揭示了编码 CYP255A1 家族 P450 的 基因的上调,以及先前显示负责 4-烷基酚代谢的 -裂解途径的 基因。RHA1 中同源途径的功能得到了证实:编码 -裂解烷基儿茶酚双加氧酶的 和 基因缺失突变体在生长时能利用愈创木酚但不能利用 4PG。相比之下,编码 CYP255A2 家族 P450 和 -裂解途径酶的 和 基因缺失突变体在生长时能利用 4-丙基愈创木酚但不能利用愈创木酚。来自 EP4 的 CYP255A1 催化 4-烷基愈创木酚的 -去甲基化生成 4-烷基儿茶酚,表观特异性(/)为:丙基 > 乙基 > 甲基 > 愈创木酚。这种顺序在很大程度上反映了 AgcA 对不同愈创木酚的结合亲和力,并且与 GcoA 的特异性相反。AgcA 的生物催化潜力通过 EP4 能够在玉米秸秆还原催化馏分得到的木质素衍生产物上生长来证明,这些产物耗尽了烷基愈创木酚和烷基苯酚。通过鉴定与木质素相关愈创木酚具有互补特异性的相关 P450,本研究为这些酶的生物催化应用设计提供了便利。我们进一步证明了愈创木酚的代谢命运取决于其取代模式,这一发现对工程生物催化剂以增值木质素有重要意义。