Suppr超能文献

通过空间分段单细胞转录组学揭示位置对细胞转录特性的影响。

Positional influence on cellular transcriptional identity revealed through spatially segmented single-cell transcriptomics.

机构信息

Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Ave, Cambridge, UK; Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

Cell Syst. 2023 Jun 21;14(6):464-481.e7. doi: 10.1016/j.cels.2023.05.003.

Abstract

Single-cell RNA sequencing (scRNA-seq) is a powerful technique for describing cell states. Identifying the spatial arrangement of these states in tissues remains challenging, with the existing methods requiring niche methodologies and expertise. Here, we describe segmentation by exogenous perfusion (SEEP), a rapid and integrated method to link surface proximity and environment accessibility to transcriptional identity within three-dimensional (3D) disease models. The method utilizes the steady-state diffusion kinetics of a fluorescent dye to establish a gradient along the radial axis of disease models. Classification of sample layers based on dye accessibility enables dissociated and sorted cells to be characterized by transcriptomic and regional identities. Using SEEP, we analyze spheroid, organoid, and in vivo tumor models of high-grade serous ovarian cancer (HGSOC). The results validate long-standing beliefs about the relationship between cell state and position while revealing new concepts regarding how spatially unique microenvironments influence the identity of individual cells within tumors.

摘要

单细胞 RNA 测序 (scRNA-seq) 是描述细胞状态的强大技术。确定组织中这些状态的空间排列仍然具有挑战性,现有的方法需要特定的方法和专业知识。在这里,我们描述了通过外源性灌注进行分割 (SEEP),这是一种快速集成的方法,可将表面接近度和环境可及性与三维 (3D) 疾病模型中的转录身份联系起来。该方法利用荧光染料的稳态扩散动力学沿疾病模型的径向轴建立梯度。基于染料可及性对样本层进行分类,使分离和分选的细胞能够通过转录组和区域身份进行表征。使用 SEEP,我们分析了高级别浆液性卵巢癌 (HGSOC) 的球体、类器官和体内肿瘤模型。结果验证了关于细胞状态和位置之间关系的长期观点,同时揭示了关于空间独特微环境如何影响肿瘤内单个细胞身份的新概念。

相似文献

4
Computational solutions for spatial transcriptomics.空间转录组学的计算解决方案。
Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. doi: 10.1016/j.csbj.2022.08.043. eCollection 2022.
6
Single Cell Sequencing and Kidney Organoids Generated from Pluripotent Stem Cells.单细胞测序和多能干细胞生成的肾类器官。
Clin J Am Soc Nephrol. 2020 Apr 7;15(4):550-556. doi: 10.2215/CJN.07470619. Epub 2020 Jan 28.
10
Novel insights from spatial transcriptome analysis in solid tumors.实体瘤空间转录组分析的新见解。
Int J Biol Sci. 2023 Sep 4;19(15):4778-4792. doi: 10.7150/ijbs.83098. eCollection 2023.

本文引用的文献

2
UCell: Robust and scalable single-cell gene signature scoring.UCell:强大且可扩展的单细胞基因特征评分
Comput Struct Biotechnol J. 2021 Jun 30;19:3796-3798. doi: 10.1016/j.csbj.2021.06.043. eCollection 2021.
3
Integrated analysis of multimodal single-cell data.多模态单细胞数据的综合分析。
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
5
A single-cell landscape of high-grade serous ovarian cancer.高级别浆液性卵巢癌的单细胞图谱。
Nat Med. 2020 Aug;26(8):1271-1279. doi: 10.1038/s41591-020-0926-0. Epub 2020 Jun 22.
6
7
Developing Organoids from Ovarian Cancer as Experimental and Preclinical Models.从卵巢癌中开发类器官作为实验和临床前模型。
Stem Cell Reports. 2020 Apr 14;14(4):717-729. doi: 10.1016/j.stemcr.2020.03.004. Epub 2020 Apr 2.
9
Cerebro: interactive visualization of scRNA-seq data.脑:单细胞 RNA-seq 数据的交互式可视化。
Bioinformatics. 2020 Apr 1;36(7):2311-2313. doi: 10.1093/bioinformatics/btz877.
10
High-definition spatial transcriptomics for in situ tissue profiling.高分辨率空间转录组学用于组织原位分析。
Nat Methods. 2019 Oct;16(10):987-990. doi: 10.1038/s41592-019-0548-y. Epub 2019 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验