Suppr超能文献

基于无监督深度学习的血管弹性成像应用中的位移估计。

Unsupervised deep learning-based displacement estimation for vascular elasticity imaging applications.

机构信息

Biomedical Engineering Department, Columbia University, New York, NY, United States of America.

Department of Radiology, Columbia University, New York, NY, United States of America.

出版信息

Phys Med Biol. 2023 Jul 24;68(15). doi: 10.1088/1361-6560/ace0f0.

Abstract

. Arterial wall stiffness can provide valuable information on the proper function of the cardiovascular system. Ultrasound elasticity imaging techniques have shown great promise as a low-cost and non-invasive tool to enable localized maps of arterial wall stiffness. Such techniques rely upon motion detection algorithms that provide arterial wall displacement estimation.. In this study, we propose an unsupervised deep learning-based approach, originally proposed for image registration, in order to enable improved quality arterial wall displacement estimation at high temporal and spatial resolutions. The performance of the proposed network was assessed through phantom experiments, where various models were trained by using ultrasound RF signals, or B-mode images, as well as different loss functions.. Using the mean square error (MSE) for the training process provided the highest signal-to-noise ratio when training on the B-modes images (30.36 ± 1.14 dB) and highest contrast-to-noise ratio when training on the RF signals (32.84 ± 1.89 dB). In addition, training the model on RF signals demonstrated the capability of providing accurate localized pulse wave velocity (PWV) maps, with a mean relative error (MRE) of 3.32 ± 1.80% and an2 of 0.97 ± 0.03. Finally, the developed model was tested in human common carotid arteries, providing accurate tracking of the distension pulse wave propagation, with an MRE= 3.86 ± 2.69% and2 = 0.95 ± 0.03.. In conclusion, a novel displacement estimation approach was presented, showing promise in improving vascular elasticity imaging techniques.

摘要

动脉壁僵硬程度可以为心血管系统的正常功能提供有价值的信息。超声弹性成象技术作为一种低成本、非侵入性的工具,有望提供动脉壁僵硬程度的局部图谱。这种技术依赖于运动检测算法,该算法可以提供动脉壁位移估计。在这项研究中,我们提出了一种基于无监督深度学习的方法,最初是为图像配准而提出的,以便能够以更高的时间和空间分辨率提高动脉壁位移估计的质量。通过对各种模型进行超声射频信号或 B 模式图像以及不同损失函数的训练,评估了所提出网络的性能。使用均方误差(MSE)作为训练过程的指标,在对 B 模式图像进行训练时,可获得最高的信噪比(30.36 ± 1.14 dB),在对 RF 信号进行训练时,可获得最高的对比噪声比(32.84 ± 1.89 dB)。此外,对 RF 信号进行训练的模型还具有提供准确局部脉搏波速度(PWV)图谱的能力,其平均相对误差(MRE)为 3.32 ± 1.80%,²为 0.97 ± 0.03。最后,在人体颈总动脉中对所开发的模型进行了测试,其具有准确跟踪扩张脉搏波传播的能力,其平均相对误差(MRE)为 3.86 ± 2.69%,²为 0.95 ± 0.03。总之,提出了一种新的位移估计方法,有望改进血管弹性成像技术。

相似文献

本文引用的文献

2
Adaptive Wall Shear Stress Imaging in Phantoms, Simulations and In Vivo.自适应壁切应力成像:在体模、模拟和体内的应用。
IEEE Trans Biomed Eng. 2023 Jan;70(1):154-165. doi: 10.1109/TBME.2022.3186854. Epub 2022 Dec 26.
5
Pulse Wave Imaging Coupled With Vector Flow Mapping: A Phantom, Simulation, and In Vivo Study.脉搏波成像结合向量血流图:一项在体、仿真和体模研究。
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2516-2531. doi: 10.1109/TUFFC.2021.3074113. Epub 2021 Jun 29.
6
Deep Convolutional Neural Networks for Displacement Estimation in ARFI Imaging.基于深度卷积神经网络的声辐射力脉冲成像中位移估计
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2472-2481. doi: 10.1109/TUFFC.2021.3068377. Epub 2021 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验