Neidhardt Maximilian, Latus Sarah, Eixmann Tim, Huttmann Gereon, Schlaefer Alexander
IEEE Trans Med Imaging. 2025 Mar;44(3):1445-1453. doi: 10.1109/TMI.2024.3505676. Epub 2025 Mar 17.
Tissue stiffness is related to soft tissue pathologies and can be assessed through palpation or via clinical imaging systems, e.g., ultrasound or magnetic resonance imaging. Typically, the image based approaches are not suitable during interventions, particularly for minimally invasive surgery. To this end, we present a miniaturized fiber scanning endoscope for fast and localized elastography. Moreover, we propose a deep learning based signal processing pipeline to account for the intricate data and the need for real-time estimates. Our elasticity estimation approach is based on imaging complex and diffuse wave fields that encompass multiple wave frequencies and propagate in various directions. We optimize the probe design to enable different scan patterns. To maximize temporal sampling while maintaining three-dimensional information we define a scan pattern in a conical shape with a temporal frequency of 5.05kHz. To efficiently process the image sequences of complex wave fields we consider a spatio-temporal deep learning network. We train the network in an end-to-end fashion on measurements from phantoms representing multiple elasticities. The network is used to obtain localized and robust elasticity estimates, allowing to create elasticity maps in real-time. For 2D scanning, our approach results in a mean absolute error of 6.31(576)kPa compared to 11.33(1278)kPa for conventional phase tracking. For scanning without estimating the wave direction, the novel 3D method reduces the error to 4.48(363)kPa compared to 19.75(2182)kPa for the conventional 2D method. Finally, we demonstrate feasibility of elasticity estimates in ex-vivo porcine tissue.
组织硬度与软组织病变相关,可通过触诊或临床成像系统(如超声或磁共振成像)进行评估。通常,基于图像的方法在干预过程中并不适用,特别是对于微创手术。为此,我们提出了一种用于快速和局部弹性成像的小型化光纤扫描内窥镜。此外,我们提出了一种基于深度学习的信号处理流程,以处理复杂的数据并满足实时估计的需求。我们的弹性估计方法基于对包含多个波频率并在各个方向传播的复杂和漫射波场进行成像。我们优化探头设计以实现不同的扫描模式。为了在保持三维信息的同时最大化时间采样,我们定义了一种频率为5.05kHz的锥形扫描模式。为了有效处理复杂波场的图像序列,我们考虑了一个时空深度学习网络。我们在端到端的方式下,使用代表多种弹性的体模测量数据对网络进行训练。该网络用于获得局部且稳健的弹性估计,从而能够实时创建弹性图。对于二维扫描,与传统相位跟踪的11.33(1278)kPa相比,我们的方法平均绝对误差为6.31(576)kPa。对于不估计波方向的扫描,与传统二维方法的19.75(2182)kPa相比,新型三维方法将误差降低至4.48(363)kPa。最后,我们展示了在离体猪组织中进行弹性估计的可行性。