Suppr超能文献

基于非局部先验的汇总数据遗传精细映射可提高多种因果变异的检测能力。

Genetic fine-mapping from summary data using a nonlocal prior improves the detection of multiple causal variants.

机构信息

Research Unit of Mathematical Sciences, University of Oulu, Oulu, P.O.Box 8000, FI-90014, Finland.

Research Unit of Population Health, University of Oulu, Oulu, Finland.

出版信息

Bioinformatics. 2023 Jul 1;39(7). doi: 10.1093/bioinformatics/btad396.

Abstract

MOTIVATION

Genome-wide association studies (GWAS) have been successful in identifying genomic loci associated with complex traits. Genetic fine-mapping aims to detect independent causal variants from the GWAS-identified loci, adjusting for linkage disequilibrium patterns.

RESULTS

We present "FiniMOM" (fine-mapping using a product inverse-moment prior), a novel Bayesian fine-mapping method for summarized genetic associations. For causal effects, the method uses a nonlocal inverse-moment prior, which is a natural prior distribution to model non-null effects in finite samples. A beta-binomial prior is set for the number of causal variants, with a parameterization that can be used to control for potential misspecifications in the linkage disequilibrium reference. The results of simulations studies aimed to mimic a typical GWAS on circulating protein levels show improved credible set coverage and power of the proposed method over current state-of-the-art fine-mapping method SuSiE, especially in the case of multiple causal variants within a locus.

AVAILABILITY AND IMPLEMENTATION

https://vkarhune.github.io/finimom/.

摘要

动机

全基因组关联研究(GWAS)已成功鉴定出与复杂性状相关的基因组位点。遗传精细映射旨在从 GWAS 鉴定的基因座中检测独立的因果变异,同时调整连锁不平衡模式。

结果

我们提出了“FiniMOM”(使用乘积逆矩先验进行精细映射),这是一种用于汇总遗传关联的新型贝叶斯精细映射方法。对于因果效应,该方法使用非局部逆矩先验,这是一种自然的先验分布,可以在有限样本中对非零效应进行建模。对于因果变异的数量设置了贝塔二项式先验,并进行参数化,以便可以控制连锁不平衡参考中的潜在指定错误。旨在模拟循环蛋白水平的典型 GWAS 的模拟研究结果表明,与当前最先进的精细映射方法 SuSiE 相比,所提出的方法在可信集覆盖和功效方面都有所提高,尤其是在一个基因座内存在多个因果变异的情况下。

可用性和实现

https://vkarhune.github.io/finimom/。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b247/10326304/9f8513644896/btad396f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验