Suppr超能文献

Finemap-MiXeR:一种用于遗传精细映射的变分贝叶斯方法。

Finemap-MiXeR: A variational Bayesian approach for genetic finemapping.

机构信息

Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.

Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway.

出版信息

PLoS Genet. 2024 Aug 15;20(8):e1011372. doi: 10.1371/journal.pgen.1011372. eCollection 2024 Aug.

Abstract

Genome-wide association studies (GWAS) implicate broad genomic loci containing clusters of highly correlated genetic variants. Finemapping techniques can select and prioritize variants within each GWAS locus which are more likely to have a functional influence on the trait. Here, we present a novel method, Finemap-MiXeR, for finemapping causal variants from GWAS summary statistics, controlling for correlation among variants due to linkage disequilibrium. Our method is based on a variational Bayesian approach and direct optimization of the Evidence Lower Bound (ELBO) of the likelihood function derived from the MiXeR model. After obtaining the analytical expression for ELBO's gradient, we apply Adaptive Moment Estimation (ADAM) algorithm for optimization, allowing us to obtain the posterior causal probability of each variant. Using these posterior causal probabilities, we validated Finemap-MiXeR across a wide range of scenarios using both synthetic data, and real data on height from the UK Biobank. Comparison of Finemap-MiXeR with two existing methods, FINEMAP and SuSiE RSS, demonstrated similar or improved accuracy. Furthermore, our method is computationally efficient in several aspects. For example, unlike many other methods in the literature, its computational complexity does not increase with the number of true causal variants in a locus and it does not require any matrix inversion operation. The mathematical framework of Finemap-MiXeR is flexible and may also be applied to other problems including cross-trait and cross-ancestry finemapping.

摘要

全基因组关联研究(GWAS)表明,基因组中存在大量与遗传变异高度相关的基因座。精细映射技术可以在每个 GWAS 基因座内选择和优先考虑更有可能对性状产生功能影响的变异。在这里,我们提出了一种新的方法,Finemap-MiXeR,用于从 GWAS 汇总统计数据中精细映射因果变异,同时控制由于连锁不平衡而导致的变异之间的相关性。我们的方法基于变分贝叶斯方法和直接优化来自 MiXeR 模型的似然函数的证据下限(ELBO)。在获得 ELBO 的梯度的解析表达式之后,我们应用自适应矩估计(ADAM)算法进行优化,从而可以获得每个变体的后验因果概率。使用这些后验因果概率,我们使用合成数据以及来自 UK Biobank 的身高的真实数据在广泛的场景中验证了 Finemap-MiXeR。与两种现有方法 FINEMAP 和 SuSiE RSS 的比较表明,Finemap-MiXeR 的准确性相似或有所提高。此外,我们的方法在几个方面具有计算效率。例如,与文献中的许多其他方法不同,它的计算复杂度不会随着基因座中真正的因果变体数量的增加而增加,并且不需要进行任何矩阵求逆操作。Finemap-MiXeR 的数学框架灵活,也可应用于包括跨性状和跨祖先精细映射在内的其他问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3324/11349196/e7e19d68f8e6/pgen.1011372.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验