Suppr超能文献

进行变量选择后对 Cox 风险比进行有效推断。

Ensuring valid inference for Cox hazard ratios after variable selection.

机构信息

Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

出版信息

Biometrics. 2023 Dec;79(4):3096-3110. doi: 10.1111/biom.13889. Epub 2023 Jun 22.

Abstract

The problem of how to best select variables for confounding adjustment forms one of the key challenges in the evaluation of exposure effects in observational studies, and has been the subject of vigorous recent activity in causal inference. A major drawback of routine procedures is that there is no finite sample size at which they are guaranteed to deliver exposure effect estimators and associated confidence intervals with adequate performance. In this work, we will consider this problem when inferring conditional causal hazard ratios from observational studies under the assumption of no unmeasured confounding. The major complication that we face with survival data is that the key confounding variables may not be those that explain the censoring mechanism. In this paper, we overcome this problem using a novel and simple procedure that can be implemented using off-the-shelf software for penalized Cox regression. In particular, we will propose tests of the null hypothesis that the exposure has no effect on the considered survival endpoint, which are uniformly valid under standard sparsity conditions. Simulation results show that the proposed methods yield valid inferences even when covariates are high-dimensional.

摘要

如何最佳选择混杂调整变量的问题是评估观察性研究中暴露效应的关键挑战之一,也是因果推断领域近期活跃研究的主题。常规方法的一个主要缺点是,没有有限的样本量可以保证它们能够以足够的性能提供暴露效应估计值和相关置信区间。在这项工作中,我们将在假设不存在未测量混杂的情况下,从观察性研究中推断条件因果风险比时考虑这个问题。我们在生存数据中面临的主要复杂情况是,关键混杂变量可能不是解释删失机制的变量。在本文中,我们使用一种新颖而简单的方法来克服这个问题,该方法可以使用惩罚 Cox 回归的现成软件来实现。具体来说,我们将提出检验零假设的检验,即暴露对所考虑的生存终点没有影响,在标准稀疏条件下具有一致性有效性。模拟结果表明,即使协变量是高维的,所提出的方法也能得出有效的推断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验