Stony Brook University, Stony Brook, NY, USA.
AMIA Annu Symp Proc. 2023 Apr 29;2022:719-728. eCollection 2022.
Deep-learning-based clinical decision support using structured electronic health records (EHR) has been an active research area for predicting risks of mortality and diseases. Meanwhile, large amounts of narrative clinical notes provide complementary information, but are often not integrated into predictive models. In this paper, we provide a novel multimodal transformer to fuse clinical notes and structured EHR data for better prediction of in-hospital mortality. To improve interpretability, we propose an integrated gradients (IG) method to select important words in clinical notes and discover the critical structured EHR features with Shapley values. These important words and clinical features are visualized to assist with interpretation of the prediction outcomes. We also investigate the significance of domain adaptive pretraining and task adaptive fine-tuning on the Clinical BERT, which is used to learn the representations of clinical notes. Experiments demonstrated that our model outperforms other methods (AUCPR: 0.538, AUCROC: 0.877, F1:0.490).
基于深度学习的临床决策支持利用结构化电子健康记录(EHR)一直是预测死亡率和疾病风险的活跃研究领域。同时,大量的叙述性临床笔记提供了补充信息,但通常未被整合到预测模型中。在本文中,我们提供了一种新颖的多模态转换器,用于融合临床笔记和结构化 EHR 数据,以更好地预测住院死亡率。为了提高可解释性,我们提出了一种集成梯度(IG)方法来选择临床笔记中的重要单词,并使用 Shapley 值发现关键的结构化 EHR 特征。这些重要的单词和临床特征可视化后,有助于解释预测结果。我们还研究了域自适应预训练和任务自适应微调对 Clinical BERT 的重要性,Clinical BERT 用于学习临床笔记的表示。实验表明,我们的模型优于其他方法(AUCPR:0.538,AUCROC:0.877,F1:0.490)。