Suppr超能文献

从癫痫患者出院小结中提取首次癫痫发作起始的时间表达

Extracting Temporal Expressions of First Seizure Onset from Epilepsy Patient Discharge Summaries.

作者信息

Tao Shiqiang, Abeysinghe Rashmie, De La Esperanza Blanca Talavera, Lhatoo Samden, Zhang Guo-Qiang, Cui Licong

机构信息

Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX.

School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX.

出版信息

AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:515-524. eCollection 2023.

Abstract

Early onset of seizure is a potential risk factor for Sudden Unexpected Death in Epilepsy (SUDEP). However, the first seizure onset information is often documented as clinical narratives in epilepsy monitoring unit (EMU) discharge summaries. Manually extracting first seizure onset time from discharge summaries is time consuming and labor-intensive. In this work, we developed a rule-based natural language processing pipeline for automatically extracting the temporal information of patients' first seizure onset from EMU discharge summaries. We use the Epilepsy and Seizure Ontology (EpSO) as the core knowledge resource and construct 4 extraction rules based on 300 randomly selected EMU discharge summaries. To evaluate the effectiveness of the extraction pipeline, we apply the constructed rules on another 200 unseen discharge summaries and compare the results against the manual evaluation of a domain expert. Overall, our extraction pipeline achieved a precision of 0.75, recall of 0.651, and F1-score of 0.697. This is an encouraging initial result which will allow us to gain insights into potentially better-performing approaches.

摘要

癫痫发作的早期发生是癫痫性猝死(SUDEP)的一个潜在风险因素。然而,首次癫痫发作的起始信息在癫痫监测单元(EMU)出院小结中通常记录为临床叙述。从出院小结中手动提取首次癫痫发作的起始时间既耗时又费力。在这项工作中,我们开发了一个基于规则的自然语言处理管道,用于从EMU出院小结中自动提取患者首次癫痫发作的时间信息。我们使用癫痫与发作本体(EpSO)作为核心知识资源,并基于300篇随机选择的EMU出院小结构建了4条提取规则。为了评估提取管道的有效性,我们将构建的规则应用于另外200篇未见过的出院小结,并将结果与领域专家的人工评估进行比较。总体而言,我们的提取管道的精确率为0.75,召回率为0.651,F1分数为0.697。这是一个令人鼓舞的初步结果,将使我们能够深入了解可能性能更好的方法。

相似文献

1
Extracting Temporal Expressions of First Seizure Onset from Epilepsy Patient Discharge Summaries.
AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:515-524. eCollection 2023.
3
Complex epilepsy phenotype extraction from narrative clinical discharge summaries.
J Biomed Inform. 2014 Oct;51:272-9. doi: 10.1016/j.jbi.2014.06.006. Epub 2014 Jun 26.
4
Treatments for the prevention of Sudden Unexpected Death in Epilepsy (SUDEP).
Cochrane Database Syst Rev. 2020 Apr 2;4(4):CD011792. doi: 10.1002/14651858.CD011792.pub3.
5
MEDCIS: Multi-Modality Epilepsy Data Capture and Integration System.
AMIA Annu Symp Proc. 2014 Nov 14;2014:1248-57. eCollection 2014.
6
Treatments for the prevention of Sudden Unexpected Death in Epilepsy (SUDEP).
Cochrane Database Syst Rev. 2016 Jul 19;7(7):CD011792. doi: 10.1002/14651858.CD011792.pub2.
7
OPIC: Ontology-driven Patient Information Capturing system for epilepsy.
AMIA Annu Symp Proc. 2012;2012:799-808. Epub 2012 Nov 3.
8
Extracting seizure frequency from epilepsy clinic notes: a machine reading approach to natural language processing.
J Am Med Inform Assoc. 2022 Apr 13;29(5):873-881. doi: 10.1093/jamia/ocac018.
9
Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing.
Methods Inf Med. 2020 Dec;59(S 02):e64-e78. doi: 10.1055/s-0040-1716403. Epub 2020 Oct 14.
10
Autopsy-reported cause of death in a population-based cohort of sudden unexpected death in epilepsy.
Epilepsia. 2021 Feb;62(2):472-480. doi: 10.1111/epi.16793. Epub 2021 Jan 5.

引用本文的文献

本文引用的文献

1
Temporal Cohort Logic.
AMIA Annu Symp Proc. 2023 Apr 29;2022:1237-1246. eCollection 2022.
3
A system for automatically extracting clinical events with temporal information.
BMC Med Inform Decis Mak. 2020 Aug 20;20(1):198. doi: 10.1186/s12911-020-01208-9.
4
Extraction of temporal relations from clinical free text: A systematic review of current approaches.
J Biomed Inform. 2020 Aug;108:103488. doi: 10.1016/j.jbi.2020.103488. Epub 2020 Jul 13.
5
Reconstructing the patient's natural history from electronic health records.
Artif Intell Med. 2020 May;105:101860. doi: 10.1016/j.artmed.2020.101860. Epub 2020 May 3.
6
Treatments for the prevention of Sudden Unexpected Death in Epilepsy (SUDEP).
Cochrane Database Syst Rev. 2020 Apr 2;4(4):CD011792. doi: 10.1002/14651858.CD011792.pub3.
7
The first seizure as an indicator of epilepsy.
Curr Opin Neurol. 2018 Apr;31(2):156-161. doi: 10.1097/WCO.0000000000000529.
9
Risks of probable SUDEP among people with convulsive epilepsy in rural West China.
Seizure. 2016 Jul;39:19-23. doi: 10.1016/j.seizure.2016.05.002. Epub 2016 May 16.
10
MEDCIS: Multi-Modality Epilepsy Data Capture and Integration System.
AMIA Annu Symp Proc. 2014 Nov 14;2014:1248-57. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验