Suppr超能文献

从叙述性临床出院小结中提取复杂癫痫表型

Complex epilepsy phenotype extraction from narrative clinical discharge summaries.

作者信息

Cui Licong, Sahoo Satya S, Lhatoo Samden D, Garg Gaurav, Rai Prashant, Bozorgi Alireza, Zhang Guo-Qiang

机构信息

Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA.

Division of Medical Informatics, Case Western Reserve University, Cleveland, OH 44106, USA.

出版信息

J Biomed Inform. 2014 Oct;51:272-9. doi: 10.1016/j.jbi.2014.06.006. Epub 2014 Jun 26.

Abstract

Epilepsy is a common serious neurological disorder with a complex set of possible phenotypes ranging from pathologic abnormalities to variations in electroencephalogram. This paper presents a system called Phenotype Exaction in Epilepsy (PEEP) for extracting complex epilepsy phenotypes and their correlated anatomical locations from clinical discharge summaries, a primary data source for this purpose. PEEP generates candidate phenotype and anatomical location pairs by embedding a named entity recognition method, based on the Epilepsy and Seizure Ontology, into the National Library of Medicine's MetaMap program. Such candidate pairs are further processed using a correlation algorithm. The derived phenotypes and correlated locations have been used for cohort identification with an integrated ontology-driven visual query interface. To evaluate the performance of PEEP, 400 de-identified discharge summaries were used for development and an additional 262 were used as test data. PEEP achieved a micro-averaged precision of 0.924, recall of 0.931, and F1-measure of 0.927 for extracting epilepsy phenotypes. The performance on the extraction of correlated phenotypes and anatomical locations shows a micro-averaged F1-measure of 0.856 (Precision: 0.852, Recall: 0.859). The evaluation demonstrates that PEEP is an effective approach to extracting complex epilepsy phenotypes for cohort identification.

摘要

癫痫是一种常见的严重神经系统疾病,具有一系列复杂的可能表型,范围从病理异常到脑电图变化。本文提出了一种名为癫痫表型提取(PEEP)的系统,用于从临床出院小结(此目的的主要数据源)中提取复杂的癫痫表型及其相关的解剖位置。PEEP通过将基于癫痫与发作本体的命名实体识别方法嵌入到美国国立医学图书馆的MetaMap程序中,生成候选表型和解剖位置对。此类候选对再使用相关算法进行处理。所导出的表型和相关位置已用于通过集成的本体驱动视觉查询界面进行队列识别。为评估PEEP的性能,400份去标识化的出院小结用于开发,另外262份用作测试数据。PEEP在提取癫痫表型方面实现了微平均精度0.924、召回率0.931和F1值0.927。在提取相关表型和解剖位置方面的性能显示微平均F1值为0.856(精度:0.852,召回率:0.859)。该评估表明,PEEP是一种用于提取复杂癫痫表型以进行队列识别的有效方法。

相似文献

1
Complex epilepsy phenotype extraction from narrative clinical discharge summaries.
J Biomed Inform. 2014 Oct;51:272-9. doi: 10.1016/j.jbi.2014.06.006. Epub 2014 Jun 26.
5
A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):601-6. doi: 10.1136/amiajnl-2011-000163. Epub 2011 Apr 20.
6
A classification approach to coreference in discharge summaries: 2011 i2b2 challenge.
J Am Med Inform Assoc. 2012 Sep-Oct;19(5):897-905. doi: 10.1136/amiajnl-2011-000734. Epub 2012 Apr 13.
7
Joint segmentation and named entity recognition using dual decomposition in Chinese discharge summaries.
J Am Med Inform Assoc. 2014 Feb;21(e1):e84-92. doi: 10.1136/amiajnl-2013-001806. Epub 2013 Aug 9.
9
Anatomical entity recognition with a hierarchical framework augmented by external resources.
PLoS One. 2014 Oct 24;9(10):e108396. doi: 10.1371/journal.pone.0108396. eCollection 2014.

引用本文的文献

3
Whole-cycle management of women with epilepsy of child-bearing age: ontology construction and application.
BMC Med Inform Decis Mak. 2024 Apr 18;24(1):101. doi: 10.1186/s12911-024-02509-z.
4
Clinical concept and relation extraction using prompt-based machine reading comprehension.
J Am Med Inform Assoc. 2023 Aug 18;30(9):1486-1493. doi: 10.1093/jamia/ocad107.
5
Identification of patients with epilepsy using automated electronic health records phenotyping.
Epilepsia. 2023 Jun;64(6):1472-1481. doi: 10.1111/epi.17589. Epub 2023 Apr 4.
6
Transforming epilepsy research: A systematic review on natural language processing applications.
Epilepsia. 2023 Feb;64(2):292-305. doi: 10.1111/epi.17474. Epub 2022 Dec 19.
7
A multimodal clinical data resource for personalized risk assessment of sudden unexpected death in epilepsy.
Front Big Data. 2022 Aug 17;5:965715. doi: 10.3389/fdata.2022.965715. eCollection 2022.
8
A replicable, open-source, data integration method to support national practice-based research & quality improvement systems.
Epilepsy Res. 2022 Oct;186:107013. doi: 10.1016/j.eplepsyres.2022.107013. Epub 2022 Aug 18.
10
Can Big Data guide prognosis and clinical decisions in epilepsy?
Epilepsia. 2021 Mar;62 Suppl 2(Suppl 2):S106-S115. doi: 10.1111/epi.16786. Epub 2021 Feb 2.

本文引用的文献

1
Merging Ontology Navigation with Query Construction for Web-based Medicare Data Exploration.
AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:285-9. eCollection 2013.
2
Epilepsy and seizure ontology: towards an epilepsy informatics infrastructure for clinical research and patient care.
J Am Med Inform Assoc. 2014 Jan-Feb;21(1):82-9. doi: 10.1136/amiajnl-2013-001696. Epub 2013 May 18.
5
Modern technology calls for a modern approach to classification of epileptic seizures and the epilepsies.
Epilepsia. 2012 Mar;53(3):405-11. doi: 10.1111/j.1528-1167.2011.03376.x. Epub 2012 Feb 14.
6
Automatically correlating clinical findings and body locations in radiology reports using MedLEE.
J Digit Imaging. 2012 Apr;25(2):240-9. doi: 10.1007/s10278-011-9411-0.
7
VISAGE: A Query Interface for Clinical Research.
Summit Transl Bioinform. 2010 Mar 1;2010:76-80.
8
10
An overview of MetaMap: historical perspective and recent advances.
J Am Med Inform Assoc. 2010 May-Jun;17(3):229-36. doi: 10.1136/jamia.2009.002733.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验