Suppr超能文献

从叙述性临床出院小结中提取复杂癫痫表型

Complex epilepsy phenotype extraction from narrative clinical discharge summaries.

作者信息

Cui Licong, Sahoo Satya S, Lhatoo Samden D, Garg Gaurav, Rai Prashant, Bozorgi Alireza, Zhang Guo-Qiang

机构信息

Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA.

Division of Medical Informatics, Case Western Reserve University, Cleveland, OH 44106, USA.

出版信息

J Biomed Inform. 2014 Oct;51:272-9. doi: 10.1016/j.jbi.2014.06.006. Epub 2014 Jun 26.

Abstract

Epilepsy is a common serious neurological disorder with a complex set of possible phenotypes ranging from pathologic abnormalities to variations in electroencephalogram. This paper presents a system called Phenotype Exaction in Epilepsy (PEEP) for extracting complex epilepsy phenotypes and their correlated anatomical locations from clinical discharge summaries, a primary data source for this purpose. PEEP generates candidate phenotype and anatomical location pairs by embedding a named entity recognition method, based on the Epilepsy and Seizure Ontology, into the National Library of Medicine's MetaMap program. Such candidate pairs are further processed using a correlation algorithm. The derived phenotypes and correlated locations have been used for cohort identification with an integrated ontology-driven visual query interface. To evaluate the performance of PEEP, 400 de-identified discharge summaries were used for development and an additional 262 were used as test data. PEEP achieved a micro-averaged precision of 0.924, recall of 0.931, and F1-measure of 0.927 for extracting epilepsy phenotypes. The performance on the extraction of correlated phenotypes and anatomical locations shows a micro-averaged F1-measure of 0.856 (Precision: 0.852, Recall: 0.859). The evaluation demonstrates that PEEP is an effective approach to extracting complex epilepsy phenotypes for cohort identification.

摘要

癫痫是一种常见的严重神经系统疾病,具有一系列复杂的可能表型,范围从病理异常到脑电图变化。本文提出了一种名为癫痫表型提取(PEEP)的系统,用于从临床出院小结(此目的的主要数据源)中提取复杂的癫痫表型及其相关的解剖位置。PEEP通过将基于癫痫与发作本体的命名实体识别方法嵌入到美国国立医学图书馆的MetaMap程序中,生成候选表型和解剖位置对。此类候选对再使用相关算法进行处理。所导出的表型和相关位置已用于通过集成的本体驱动视觉查询界面进行队列识别。为评估PEEP的性能,400份去标识化的出院小结用于开发,另外262份用作测试数据。PEEP在提取癫痫表型方面实现了微平均精度0.924、召回率0.931和F1值0.927。在提取相关表型和解剖位置方面的性能显示微平均F1值为0.856(精度:0.852,召回率:0.859)。该评估表明,PEEP是一种用于提取复杂癫痫表型以进行队列识别的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3b0/4464795/8c424dd01375/nihms696029f1.jpg

相似文献

引用本文的文献

10
Can Big Data guide prognosis and clinical decisions in epilepsy?大数据能否指导癫痫的预后和临床决策?
Epilepsia. 2021 Mar;62 Suppl 2(Suppl 2):S106-S115. doi: 10.1111/epi.16786. Epub 2021 Feb 2.

本文引用的文献

10
An overview of MetaMap: historical perspective and recent advances.MetaMap 概述:历史视角与最新进展。
J Am Med Inform Assoc. 2010 May-Jun;17(3):229-36. doi: 10.1136/jamia.2009.002733.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验