Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada.
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
Front Immunol. 2023 Jun 7;14:1198716. doi: 10.3389/fimmu.2023.1198716. eCollection 2023.
Reactive oxygen species (ROS) is essential for neutrophil extracellular trap formation (NETosis), and generated either by NADPH oxidases (e.g., during infections) or mitochondria (e.g., sterile injury) in neutrophils. We recently showed that ultraviolet (UV) radiation, a sterile injury-inducing agent, dose-dependently induced mitochondrial ROS generation, and increasing levels of ROS shifted the neutrophil death from apoptosis to NETosis. Nevertheless, how ROS executes UV-induced NETosis is unknown. In this study, we first confirmed that UV doses used in our experiments generated mitochondrial ROS, and the inhibition of mitochondrial ROS suppressed NETosis (Mitosox, SYTOX, immunocytochemistry, imaging). Next, we showed that UV irradiation extensively oxidized DNA, by confocal imaging of 8-oxyguanine (8-oxoG) in NETs. Immunofluorescence microscopy further showed that a DNA repair protein, proliferating cell nuclear antigen, was widely distributed throughout the DNA, indicating that the DNA repair machinery was active throughout the genome during UV-induced NETosis. Inhibition of specific steps of base excision repair (BER) pathway showed that steps leading up to DNA nick formation, but not the later steps, suppressed UV-induced NETosis. In summary, this study shows that (i) high levels of mitochondrial ROS produced following UV irradiation induces extensive oxidative DNA damage, and (ii) early steps of the BER pathway leading to DNA nicking results in chromatin decondensation and NETosis. Collectively, these findings reveal how ROS induces NOX-independent NETosis, and also a novel biological mechanism for UV irradiation- and -mitochondrial ROS-mediated NETosis.
活性氧 (ROS) 对于中性粒细胞胞外诱捕网形成 (NETosis) 至关重要,它可以由 NADPH 氧化酶(例如在感染期间)或中性粒细胞中的线粒体(例如在无菌损伤时)产生。我们最近表明,紫外线 (UV) 辐射,一种诱导无菌损伤的试剂,剂量依赖性地诱导线粒体 ROS 的产生,并且 ROS 水平的增加将中性粒细胞的死亡从细胞凋亡转变为 NETosis。然而,ROS 如何执行 UV 诱导的 NETosis 尚不清楚。在这项研究中,我们首先证实我们实验中使用的 UV 剂量会产生线粒体 ROS,并且线粒体 ROS 的抑制会抑制 NETosis(Mitosox、SYTOX、免疫细胞化学、成像)。接下来,我们表明,通过 NET 中 8-氧鸟嘌呤 (8-oxoG) 的共聚焦成像,UV 照射会广泛氧化 DNA。免疫荧光显微镜进一步表明,一种 DNA 修复蛋白,增殖细胞核抗原,广泛分布在 DNA 中,表明在 UV 诱导的 NETosis 期间,DNA 修复机制在整个基因组中都很活跃。抑制碱基切除修复 (BER) 途径的特定步骤表明,导致 DNA 切口形成的步骤,但不是随后的步骤,抑制了 UV 诱导的 NETosis。总之,这项研究表明:(i) UV 照射后产生的高水平线粒体 ROS 诱导广泛的氧化 DNA 损伤,以及 (ii) 导致 DNA 切口形成的 BER 途径的早期步骤导致染色质解凝聚和 NETosis。总之,这些发现揭示了 ROS 如何诱导非 NOX 依赖性 NETosis,以及 ROS 和线粒体介导的 NETosis 的一种新的生物学机制。