Suppr超能文献

两种用于指导儿童结核病快速治疗决策的临床预测工具。

Two Clinical Prediction Tools to Inform Rapid Tuberculosis Treatment Decision-making in Children.

作者信息

Brooks Meredith B, Hussain Hamidah, Siddiqui Sara, Ahmed Junaid F, Jaswal Maria, Amanullah Farhana, Becerra Mercedes, Malik Amyn A

机构信息

Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA.

Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Open Forum Infect Dis. 2023 May 4;10(6):ofad245. doi: 10.1093/ofid/ofad245. eCollection 2023 Jun.

Abstract

BACKGROUND

In the absence of bacteriologic confirmation to diagnose tuberculosis (TB) in children, it is suggested that treatment should be initiated when sufficient clinical evidence of disease is available. However, it is unclear what clinical evidence is sufficient to make this decision. To identify children who would benefit from rapid initiation of TB treatment, we developed 2 clinical prediction tools.

METHODS

We conducted a secondary analysis of a prospective intensified TB patient-finding intervention conducted in Pakistan in 2014-2016. TB disease was determined through either bacteriologic confirmation or a clinical diagnosis. We derived 2 tools: 1 uses classification and regression tree (CART) analysis to develop decision trees, while the second uses multivariable logistic regression to calculate a risk score.

RESULTS

Of the 5162 and 5074 children included in the CART and prediction score, respectively, 1417 (27.5%) and 1365 (26.9%) were eligible for TB treatment. CART identified abnormal chest radiographs and family history of TB as the most important predictors (area under the receiver operating characteristic curve [AUC], 0.949). The final prediction score model included age group (0-4, 5-9, 10-14), weight <5th percentile, cough, fever, weight loss, chest radiograph suggestive of TB disease, and family history of TB; the identified best cutoff score was 9 (AUC, 0.985%).

CONCLUSIONS

Use of clinical evidence was sufficient to accurately identify children who would benefit from treatment initiation. Our tools performed well compared with existing algorithms, though these results need to be externally validated before operationalization.

摘要

背景

在缺乏细菌学确诊依据来诊断儿童结核病(TB)的情况下,建议在有足够疾病临床证据时开始治疗。然而,尚不清楚何种临床证据足以做出这一决定。为了确定哪些儿童能从快速开始抗结核治疗中获益,我们开发了两种临床预测工具。

方法

我们对2014 - 2016年在巴基斯坦进行的一项前瞻性强化结核病患者发现干预措施进行了二次分析。结核病通过细菌学确诊或临床诊断来确定。我们得出了两种工具:一种使用分类与回归树(CART)分析来构建决策树,另一种使用多变量逻辑回归来计算风险评分。

结果

在分别纳入CART分析和预测评分的5162名和5074名儿童中,1417名(27.5%)和1365名(26.9%)有资格接受结核病治疗。CART分析确定胸部X线片异常和结核病家族史为最重要的预测因素(受试者操作特征曲线下面积[AUC],0.949)。最终的预测评分模型包括年龄组(0 - 4岁、5 - 9岁、10 - 14岁)、体重<第5百分位数、咳嗽、发热、体重减轻、提示结核病的胸部X线片以及结核病家族史;确定的最佳截断评分为9分(AUC,0.985%)。

结论

使用临床证据足以准确识别能从开始治疗中获益的儿童。与现有算法相比,我们的工具表现良好,不过在投入使用前这些结果需要外部验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2602/10284336/12b6333a1ce9/ofad245f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验