增强的线粒体 G-四链体形成阻碍复制叉的推进,导致人类细胞中线粒体 DNA 的丢失。
Enhanced mitochondrial G-quadruplex formation impedes replication fork progression leading to mtDNA loss in human cells.
机构信息
Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden.
Department of Women and Children Health, University of Padova, 35128 Padova, Italy.
出版信息
Nucleic Acids Res. 2023 Aug 11;51(14):7392-7408. doi: 10.1093/nar/gkad535.
Mitochondrial DNA (mtDNA) replication stalling is considered an initial step in the formation of mtDNA deletions that associate with genetic inherited disorders and aging. However, the molecular details of how stalled replication forks lead to mtDNA deletions accumulation are still unclear. Mitochondrial DNA deletion breakpoints preferentially occur at sequence motifs predicted to form G-quadruplexes (G4s), four-stranded nucleic acid structures that can fold in guanine-rich regions. Whether mtDNA G4s form in vivo and their potential implication for mtDNA instability is still under debate. In here, we developed new tools to map G4s in the mtDNA of living cells. We engineered a G4-binding protein targeted to the mitochondrial matrix of a human cell line and established the mtG4-ChIP method, enabling the determination of mtDNA G4s under different cellular conditions. Our results are indicative of transient mtDNA G4 formation in human cells. We demonstrate that mtDNA-specific replication stalling increases formation of G4s, particularly in the major arc. Moreover, elevated levels of G4 block the progression of the mtDNA replication fork and cause mtDNA loss. We conclude that stalling of the mtDNA replisome enhances mtDNA G4 occurrence, and that G4s not resolved in a timely manner can have a negative impact on mtDNA integrity.
线粒体 DNA(mtDNA)复制停滞被认为是 mtDNA 缺失形成的初始步骤,这些缺失与遗传疾病和衰老有关。然而,停滞的复制叉如何导致 mtDNA 缺失积累的分子细节仍不清楚。线粒体 DNA 缺失断点优先发生在预测形成 G-四链体(G4s)的序列模体上,G4s 是富含鸟嘌呤的区域中可以折叠的四链核酸结构。线粒体 DNA G4s 是否在体内形成及其对 mtDNA 不稳定性的潜在影响仍存在争议。在这里,我们开发了新的工具来绘制活细胞中线粒体 DNA 中的 G4s。我们设计了一种靶向人细胞系线粒体基质的 G4 结合蛋白,并建立了 mtG4-ChIP 方法,能够在不同的细胞条件下确定 mtDNA G4s。我们的结果表明人类细胞中存在瞬时 mtDNA G4 形成。我们证明 mtDNA 特异性复制停滞增加了 G4 的形成,特别是在主要环上。此外,G4 水平的升高会阻止 mtDNA 复制叉的前进,并导致 mtDNA 丢失。我们得出结论,mtDNA 复制体的停滞增强了 mtDNA G4 的发生,并且不能及时解决的 G4 可能对 mtDNA 完整性产生负面影响。