Suppr超能文献

用于等离子体氢传感的高渗透性氟化聚合物纳米复合材料

Highly Permeable Fluorinated Polymer Nanocomposites for Plasmonic Hydrogen Sensing.

作者信息

Östergren Ida, Pourrahimi Amir Masoud, Darmadi Iwan, da Silva Robson, Stolaś Alicja, Lerch Sarah, Berke Barbara, Guizar-Sicairos Manuel, Liebi Marianne, Foli Giacomo, Palermo Vincenzo, Minelli Matteo, Moth-Poulsen Kasper, Langhammer Christoph, Müller Christian

机构信息

Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden.

Department of Physics, Chalmers University of Technology, Göteborg 412 96, Sweden.

出版信息

ACS Appl Mater Interfaces. 2021 May 12;13(18):21724-21732. doi: 10.1021/acsami.1c01968. Epub 2021 Apr 28.

Abstract

Hydrogen (H) sensors that can be produced with cost-effective manufacturing tools are critical for enabling safety in the emerging hydrogen economy. The use of melt-processed nanocomposites in this context would allow the combination of the advantages of plasmonic hydrogen detection with polymer technology; an approach which is held back by the slow diffusion of H through the polymer matrix. Here, we show that the use of an amorphous fluorinated polymer, compounded with colloidal Pd nanoparticles prepared by highly scalable continuous flow synthesis, results in nanocomposites that display a high H diffusion coefficient in the order of 10 cm s. As a result, plasmonic optical hydrogen detection with melt-pressed fluorinated polymer nanocomposites is no longer limited by the diffusion of the H analyte to the Pd nanoparticle transducer elements, despite a thickness of up to 100 μm, thereby enabling response times as short as 2.5 s at 100 mbar (≡10 vol. %) H. Evidently, plasmonic sensors with a fast response time can be fabricated with thick, melt-processed nanocomposites, which paves the way for a new generation of robust H sensors.

摘要

能够使用具有成本效益的制造工具生产的氢(H)传感器对于新兴氢经济中的安全保障至关重要。在这种情况下,使用熔融加工的纳米复合材料可以将等离子体氢检测的优势与聚合物技术相结合;然而,氢在聚合物基体中的缓慢扩散阻碍了这种方法的应用。在此,我们表明,使用一种非晶态含氟聚合物,并与通过高度可扩展的连续流动合成制备的胶体钯纳米颗粒复合,可得到纳米复合材料,其氢扩散系数高达10⁻⁹ cm² s⁻¹ 。结果,尽管熔融压制的含氟聚合物纳米复合材料厚度高达100 μm,但基于等离子体光学的氢检测不再受氢分析物向钯纳米颗粒传感元件扩散的限制,从而在100 mbar(≡10 vol. %)的氢气中响应时间可短至2.5 s。显然,具有快速响应时间的等离子体传感器可以用厚的、熔融加工的纳米复合材料制造,这为新一代坚固的氢传感器铺平了道路

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5367/8289187/bee84f653c84/am1c01968_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验