SUNY Polytechnic Institute, College of Nanoscale Engineering and Technology Innovation , 257 Fuller Road , Albany , New York 12203 , United States.
General Electric Global Research Center , Niskayuna , New York 12309 , United States.
ACS Sens. 2018 Dec 28;3(12):2684-2692. doi: 10.1021/acssensors.8b01193. Epub 2018 Dec 11.
Next-generation gas-sensor technologies are needed for diverse applications including environmental surveillance, occupational safety, and industrial process control. However, the dynamic range using existing sensors is often too narrow to meet demands. In this work, plasmonic films of Au-CeO that detect hydrogen with 0.38% and 60% lower and upper detection limits in an oxygen-free atmosphere experiment are demonstrated. The observed 15 nm peak shift was 4 times stronger versus other plasmonic H sensors. The proposed sensing mechanism that involves H dissociation by Au nanoparticles was validated using XPS, kinetics, and Arrhenius studies. Our understanding of this remarkable sensing behavior in oxygen-free conditions opens new horizons for packaging, art conservation, industrial process control, and other applications where conventional oxygen-dependent sensors lack broad dynamic range.
需要新一代的气体传感器技术来满足各种应用需求,包括环境监测、职业安全和工业过程控制。然而,现有的传感器的动态范围通常太窄,无法满足需求。在这项工作中,展示了具有 Au-CeO 等离子体膜的氢气传感器,在无氧环境实验中,其下检测限和上检测限分别降低了 0.38%和 60%。与其他等离子体 H 传感器相比,观察到的 15nm 峰位移要强 4 倍。使用 XPS、动力学和 Arrhenius 研究验证了涉及 Au 纳米颗粒的 H 离解的传感机制。我们对这种在无氧条件下的显著传感行为的理解为包装、艺术品保护、工业过程控制和其他应用领域开辟了新的前景,在这些领域中,传统的氧依赖性传感器缺乏广泛的动态范围。