Suppr超能文献

一个由与细胞衰老相关的 lncRNAs 组成的预测分子特征,用于肺腺癌的预后。

A predictive molecular signature consisting of lncRNAs associated with cellular senescence for the prognosis of lung adenocarcinoma.

机构信息

Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.

出版信息

PLoS One. 2023 Jun 23;18(6):e0287132. doi: 10.1371/journal.pone.0287132. eCollection 2023.

Abstract

The role of long noncoding RNAs (lncRNAs) has been verified by more and more researches in recent years. However, there are few reports on cellular senescence-associated lncRNAs in lung adenocarcinoma (LUAD). Therefore, to explore the prognostic effect of lncRNAs in LUAD, 279 cellular senescence-related genes, survival information and clinicopathologic parameters were derived from the CellAge database and The Cancer Genome Atlas (TCGA) database. Then, we constructed a novel cellular senescence-associated lncRNAs predictive signature (CS-ALPS) consisting of 6 lncRNAS (AC026355.1, AL365181.2, AF131215.5, C20orf197, GAS6-AS1, GSEC). According to the median of the risk score, 480 samples were divided into high-risk and low-risk groups. Furthermore, the clinicopathological and biological functions, immune characteristics and common drug sensitivity were analyzed between two risk groups. In conclusion, the CS-ALPS can independently forecast the prognosis of LUAD, which reveals the potential molecular mechanism of cellular senescence-associated lncRNAs, and provides appropriate strategies for the clinical treatment of patients with LUAD.

摘要

近年来,越来越多的研究证实了长非编码 RNA(lncRNA)的作用。然而,关于肺腺癌(LUAD)中与细胞衰老相关的 lncRNA 的报道较少。因此,为了探讨 lncRNA 在 LUAD 中的预后作用,我们从 CellAge 数据库和癌症基因组图谱(TCGA)数据库中提取了 279 个与细胞衰老相关的基因、生存信息和临床病理参数。然后,我们构建了一个由 6 个 lncRNA(AC026355.1、AL365181.2、AF131215.5、C20orf197、GAS6-AS1、GSEC)组成的新型与细胞衰老相关的 lncRNA 预测特征(CS-ALPS)。根据风险评分的中位数,将 480 个样本分为高风险和低风险组。此外,我们还分析了两组之间的临床病理和生物学功能、免疫特征和常见药物敏感性。总之,CS-ALPS 可以独立预测 LUAD 的预后,揭示了与细胞衰老相关的 lncRNA 的潜在分子机制,并为 LUAD 患者的临床治疗提供了合适的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/831e/10289466/8e014819600f/pone.0287132.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验