Suppr超能文献

预测德克萨斯州农村地区的企业创建:一种针对复杂政策问题的多模型机器学习方法。

Predicting firm creation in rural Texas: A multi-model machine learning approach to a complex policy problem.

机构信息

University of Texas at Arlington, Arlington, Texas, United States of America.

LBJ School of Public Affairs, University of Texas at Austin, Austin, Texas, United States of America.

出版信息

PLoS One. 2023 Jun 23;18(6):e0287217. doi: 10.1371/journal.pone.0287217. eCollection 2023.

Abstract

Rural and urban America have becoming increasingly divided, both politically and economically. Entrepreneurship can help rural communities catch back up by jumpstarting economic growth, creating jobs, and building resilience to economic shocks. However, less is known about firm creation in rural areas compared to urban areas. To that end, in this paper we ask: What factors predict firm creation in rural America? Our analysis, based on a comparative framework involving multiple machine learning modeling techniques, helps addresses three gaps in academic literature on rural firm creation. First, entrepreneurship research stretches across disciplines, often using econometric methods to identify the effect of a specific variable, rather than comparing the predictive importance of multiple variables. Second, research on firm creation centers on high-tech, urban firms. Third, modern machine learning techniques have not yet been applied in an integrated way to address rural entrepreneurship, a complex economic and policy problem that defies simple, monocausal claims. In this paper, we apply four machine learning methods (subset selection, lasso, random forest, and extreme gradient boosting) to a novel dataset to examine what social and economic factors are predictive of firm growth in rural Texas counties from 2008-2018. Our results suggest that some factors commonly discussed as promoting entrepreneurship (e.g., access to broadband and patents) may not be as predictive as socioeconomic ones (age distribution, ethnic diversity, social capital, and immigration). We also find that the strength of specific industries (oil, wind, healthcare, and elder/childcare) predicts firm growth, as does the number of local banks. Most factors predictive of firm growth in rural counties are distinct from those in urban counties, supporting the argument that rural entrepreneurship is a distinct phenomenon worthy of distinct focus. More broadly, this multi-model approach can offer initial, focusing guidance to policymakers seeking to address similarly complex policy problems.

摘要

美国的农村和城市地区在政治和经济上变得越来越分化。创业可以通过启动经济增长、创造就业机会和增强对经济冲击的韧性来帮助农村社区迎头赶上。然而,与城市地区相比,人们对农村地区的企业创建了解较少。为此,本文我们提出一个问题:哪些因素可以预测美国农村地区的企业创建?我们的分析基于一个涉及多种机器学习建模技术的比较框架,可以帮助解决农村企业创建学术文献中的三个空白。首先,创业研究跨越了多个学科,通常使用计量经济学方法来识别特定变量的影响,而不是比较多个变量的预测重要性。其次,企业创建研究集中在高科技、城市企业上。第三,现代机器学习技术尚未以综合方式应用于解决农村创业这一复杂的经济和政策问题,该问题难以用简单的单一因果关系来解释。在本文中,我们应用了四种机器学习方法(子集选择、套索、随机森林和极端梯度增强)来分析一个新颖的数据集,以检验 2008-2018 年德克萨斯州农村县的企业增长的社会和经济因素有哪些。我们的结果表明,一些通常被认为促进创业的因素(例如,宽带和专利的获取)可能不如社会经济因素(年龄分布、族裔多样性、社会资本和移民)具有预测性。我们还发现,特定行业(石油、风力、医疗保健和老年/儿童护理)的实力以及当地银行的数量也可以预测企业的增长。农村县企业增长的大多数预测因素与城市县的不同,这支持了农村创业是一种独特现象的观点,值得特别关注。更广泛地说,这种多模型方法可以为寻求解决类似复杂政策问题的政策制定者提供初步的重点指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验