Suppr超能文献

迈向主观喜好的客观理论:理解美感的第一步。

Towards an objective theory of subjective liking: A first step in understanding the sense of beauty.

机构信息

CIAS Interdepartmental Research Center (Dept. of Architecture, Dept. of Chemical, Pharmaceutical and Agricultural Sciences), University of Ferrara, Ferrara, Italy.

Dept. of Mathematics and Computer Science, University of Ferrara, Ferrara, Italy.

出版信息

PLoS One. 2023 Jun 23;18(6):e0287513. doi: 10.1371/journal.pone.0287513. eCollection 2023.

Abstract

The study of the electroencephalogram signals recorded from subjects during an experience is a way to understand the brain processes that underlie their physical and emotional involvement. Such signals have the form of time series, and their analysis could benefit from applying techniques that are specific to this kind of data. Neuroaesthetics, as defined by Zeki in 1999, is the scientific approach to the study of aesthetic perceptions of art, music, or any other experience that can give rise to aesthetic judgments, such as liking or disliking a painting. Starting from a proprietary dataset of 248 trials from 16 subjects exposed to art paintings, using a real ecological context, this paper analyses the application of a novel symbolic machine learning technique, specifically designed to extract information from unstructured data and to express it in form of logical rules. Our purpose is to extract qualitative and quantitative logical rules, to relate the voltage at specific frequencies and in specific electrodes, and that, within the limits of the experiment, may help to understand the brain process that drives liking or disliking experiences in human subjects.

摘要

研究受试者在体验过程中记录的脑电图信号,是一种理解大脑过程的方法,这些过程是他们身体和情感参与的基础。这些信号的形式是时间序列,它们的分析可以受益于应用专门针对这种数据的技术。神经美学是由泽基在 1999 年定义的,是对艺术、音乐或任何其他能够引发审美判断的体验的审美感知的科学研究,例如喜欢或不喜欢一幅画。本文从一个专有的 248 次试验数据集开始,该数据集来自 16 个暴露于艺术绘画的受试者,使用真实的生态环境,分析了一种新的符号机器学习技术的应用,该技术专门用于从非结构化数据中提取信息,并以逻辑规则的形式表达。我们的目的是提取定性和定量的逻辑规则,将特定频率和特定电极的电压联系起来,并且在实验的限制内,这可能有助于理解驱动人类受试者喜欢或不喜欢体验的大脑过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/761c/10289447/024997b7404b/pone.0287513.g001.jpg

相似文献

1
Towards an objective theory of subjective liking: A first step in understanding the sense of beauty.
PLoS One. 2023 Jun 23;18(6):e0287513. doi: 10.1371/journal.pone.0287513. eCollection 2023.
2
The world can look better: enhancing beauty experience with brain stimulation.
Soc Cogn Affect Neurosci. 2014 Nov;9(11):1713-21. doi: 10.1093/scan/nst165. Epub 2013 Oct 15.
3
The golden ratio as an ecological affordance leading to aesthetic attractiveness.
Psych J. 2022 Oct;11(5):729-740. doi: 10.1002/pchj.505. Epub 2021 Dec 23.
4
The role of working memory capacity in evaluative judgments of liking and beauty.
Cogn Emot. 2021 Nov;35(7):1407-1415. doi: 10.1080/02699931.2021.1947781. Epub 2021 Jun 30.
5
Prediction of beauty and liking ratings for abstract and representational paintings using subjective and objective measures.
PLoS One. 2018 Jul 6;13(7):e0200431. doi: 10.1371/journal.pone.0200431. eCollection 2018.
6
Measuring aesthetic emotions: A review of the literature and a new assessment tool.
PLoS One. 2017 Jun 5;12(6):e0178899. doi: 10.1371/journal.pone.0178899. eCollection 2017.
7
Beauty in the blink of an eye: The time course of aesthetic experiences.
Br J Psychol. 2018 Feb;109(1):63-84. doi: 10.1111/bjop.12258. Epub 2017 Aug 14.
9
Neural correlates of visual aesthetics--beauty as the coalescence of stimulus and internal state.
PLoS One. 2012;7(2):e31248. doi: 10.1371/journal.pone.0031248. Epub 2012 Feb 22.
10
Ugly aesthetic perception associated with emotional changes in experience of art by behavioural variant of frontotemporal dementia patients.
Neuropsychologia. 2016 Aug;89:96-104. doi: 10.1016/j.neuropsychologia.2016.06.001. Epub 2016 Jun 2.

引用本文的文献

1
Ecological decoding of visual aesthetic preference with oscillatory electroencephalogram features-A mini-review.
Front Neuroergon. 2024 Feb 21;5:1341790. doi: 10.3389/fnrgo.2024.1341790. eCollection 2024.

本文引用的文献

1
The voice of COVID-19: Breath and cough recording classification with temporal decision trees and random forests.
Artif Intell Med. 2023 Mar;137:102486. doi: 10.1016/j.artmed.2022.102486. Epub 2023 Feb 4.
2
Review on Emotion Recognition Based on Electroencephalography.
Front Comput Neurosci. 2021 Oct 1;15:758212. doi: 10.3389/fncom.2021.758212. eCollection 2021.
3
Recognition of human emotions using EEG signals: A review.
Comput Biol Med. 2021 Sep;136:104696. doi: 10.1016/j.compbiomed.2021.104696. Epub 2021 Aug 3.
4
What is an unconscious emotion?(The case for unconscious "liking").
Cogn Emot. 2003 Mar;17(2):181-211. doi: 10.1080/02699930302289.
5
Deep learning with convolutional neural networks for EEG decoding and visualization.
Hum Brain Mapp. 2017 Nov;38(11):5391-5420. doi: 10.1002/hbm.23730. Epub 2017 Aug 7.
6
Neuroaesthetics.
Trends Cogn Sci. 2014 Jul;18(7):370-5. doi: 10.1016/j.tics.2014.03.003. Epub 2014 Apr 23.
7
Toward an EEG-based recognition of music liking using time-frequency analysis.
IEEE Trans Biomed Eng. 2012 Dec;59(12):3498-510. doi: 10.1109/TBME.2012.2217495. Epub 2012 Sep 27.
8
Muscle artifacts in multichannel EEG: characteristics and reduction.
Clin Neurophysiol. 2012 Aug;123(8):1676-86. doi: 10.1016/j.clinph.2011.11.083. Epub 2012 Jan 11.
9
Removal of movement artifact from high-density EEG recorded during walking and running.
J Neurophysiol. 2010 Jun;103(6):3526-34. doi: 10.1152/jn.00105.2010. Epub 2010 Apr 21.
10
Toward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuli.
IEEE Trans Inf Technol Biomed. 2010 May;14(3):589-97. doi: 10.1109/TITB.2010.2041553. Epub 2010 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验