文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多功能光交联丝素蛋白:从化学处理到再生医学和生物制造应用的路线图。

Versatile Potential of Photo-Cross-Linkable Silk Fibroin: Roadmap from Chemical Processing Toward Regenerative Medicine and Biofabrication Applications.

机构信息

Riga Stradins University, Department of Pharmaceutical Chemistry, Riga, LV-1007, Latvia.

Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, LV-1048, Latvia.

出版信息

Biomacromolecules. 2023 Jul 10;24(7):2957-2981. doi: 10.1021/acs.biomac.3c00098. Epub 2023 Jun 23.


DOI:10.1021/acs.biomac.3c00098
PMID:37353217
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10336850/
Abstract

Over the past two decades, hydrogels have come to the forefront of tissue engineering and regenerative medicine due to their biocompatibility, tunable degradation and low immunogenicity. Due to their porosity and polymeric network built up, it is possible to incorporate inside drugs, bioactive molecules, or other biochemically active monomers. Among biopolymers used for the fabrication of functional hydrogels, silk fibroin (SF) has received considerable research attention owing to its known biocompatibility and tunable range of mechanical properties. However, its relatively simple structure limits the potential usability. One of the emerging strategies is a chemical functionalization of SF, allowing for the introduction of methacrylate groups. This allows the versatile processing capability, including photo-cross-linking, which makes SF a useful polymer as a bioink for 3D printing. The methacrylation reaction has been done using numerous monomers such as methacrylic anhydride (MA), 2-isocyanatoethyl methacrylate (IEM), or glycidyl methacrylate (GMA). In this Review, we summarize the chemical functionalization strategies of SF materials and their resulting physicochemical properties. More specifically, a brief explanation of the different functionalization methods, the cross-linking principles, possibilities, and limitations of methacrylate compound functionalization are provided. In addition, we describe types of functional SF hydrogels and link their design principles to the performance in applications in the broad fields of biofabrication, tissue engineering, and regenerative medicine. We anticipate that the provided guidelines will contribute to the future development of SF hydrogels and their composites by providing the rational design of new mechanisms linked to the successful realization of targeted biomedical application.

摘要

在过去的二十年中,由于水凝胶的生物相容性、可调节的降解性和低免疫原性,它们已经成为组织工程和再生医学的前沿领域。由于其多孔性和聚合物网络结构,可以将药物、生物活性分子或其他生物化学活性单体掺入其中。在用于制造功能性水凝胶的生物聚合物中,丝素蛋白(SF)由于其已知的生物相容性和可调节的机械性能范围而受到了相当多的研究关注。然而,其相对简单的结构限制了其潜在的可用性。一种新兴的策略是对 SF 进行化学功能化,允许引入甲基丙烯酰基。这允许多功能的处理能力,包括光交联,这使得 SF 成为 3D 打印生物墨水的有用聚合物。已经使用了许多单体如甲基丙烯酰酐(MA)、2-异氰酸根合乙基甲基丙烯酸酯(IEM)或甲基丙烯酸缩水甘油酯(GMA)对 SF 进行了甲基丙烯酰化反应。在这篇综述中,我们总结了 SF 材料的化学功能化策略及其所得的物理化学性质。更具体地说,简要解释了不同的功能化方法、交联原理、可能性和局限性的甲基丙烯酰化合物的功能化。此外,我们还描述了功能性 SF 水凝胶的类型,并将其设计原理与其在生物制造、组织工程和再生医学等广泛领域中的应用性能联系起来。我们预计,所提供的指导方针将通过为与成功实现靶向生物医学应用相关的新机制的合理设计提供贡献,从而促进 SF 水凝胶及其复合材料的未来发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb1/10336850/c52391ac59ae/bm3c00098_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb1/10336850/24337e93b9d8/bm3c00098_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb1/10336850/8b295066aca5/bm3c00098_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb1/10336850/33c90419cdef/bm3c00098_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb1/10336850/beb5d656f1d0/bm3c00098_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb1/10336850/d0378f1e4e00/bm3c00098_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb1/10336850/fc6cac695d95/bm3c00098_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb1/10336850/856661a5dec9/bm3c00098_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb1/10336850/c52391ac59ae/bm3c00098_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb1/10336850/24337e93b9d8/bm3c00098_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb1/10336850/8b295066aca5/bm3c00098_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb1/10336850/33c90419cdef/bm3c00098_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb1/10336850/beb5d656f1d0/bm3c00098_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb1/10336850/d0378f1e4e00/bm3c00098_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb1/10336850/fc6cac695d95/bm3c00098_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb1/10336850/856661a5dec9/bm3c00098_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cb1/10336850/c52391ac59ae/bm3c00098_0008.jpg

相似文献

[1]
Versatile Potential of Photo-Cross-Linkable Silk Fibroin: Roadmap from Chemical Processing Toward Regenerative Medicine and Biofabrication Applications.

Biomacromolecules. 2023-7-10

[2]
Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing.

Int J Biol Macromol. 2022-7-31

[3]
Silk fibroin as biomaterial for bone tissue engineering.

Acta Biomater. 2015-9-7

[4]
Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing.

Nat Commun. 2018-4-24

[5]
Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin.

Int J Biol Macromol. 2022-3-31

[6]
Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels.

Acta Biomater. 2021-4-15

[7]
Recent advances in photo-crosslinkable methacrylated silk (Sil-MA)-based scaffolds for regenerative medicine: A review.

Int J Biol Macromol. 2024-1

[8]
Functional silk fibroin hydrogels: preparation, properties and applications.

J Mater Chem B. 2021-2-15

[9]
3D bioprinted silk fibroin hydrogels for tissue engineering.

Nat Protoc. 2021-12

[10]
Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering.

Biomaterials. 2020-2

引用本文的文献

[1]
Bioprinting vascularized skin analogs: a stepwise approach.

Burns Trauma. 2025-3-2

[2]
Beyond natural silk: Bioengineered silk fibroin for bone regeneration.

Mater Today Bio. 2025-6-23

[3]
Enhancing Silk Fibroin Hydrogel Mechanical Properties through Biomimetic Mineralization by Self-Assembled Catalytic Complexes.

ACS Omega. 2025-5-20

[4]
Preparation and Performance Study of Dual-Network Photo-Curable Conductive Silk Fibroin Composite Hydrogel.

Materials (Basel). 2025-2-11

[5]
Preparation and Characterization of Photo-Cross-Linkable Methacrylated Silk Fibroin and Methacrylated Hyaluronic Acid Composite Hydrogels.

Biomacromolecules. 2024-11-11

[6]
Electrospun Silk-ICG Composite Fibers and the Application toward Hemorrhage Control.

J Funct Biomater. 2024-9-19

[7]
Advanced Applications of Silk-Based Hydrogels for Tissue Engineering: A Short Review.

Biomimetics (Basel). 2023-12-15

[8]
Development of Composite Sponge Scaffolds Based on Carrageenan (CRG) and Cerium Oxide Nanoparticles (CeO NPs) for Hemostatic Applications.

Biomimetics (Basel). 2023-9-4

本文引用的文献

[1]
An In Vitro and Ex Vivo Analysis of the Potential of GelMA Hydrogels as a Therapeutic Platform for Preclinical Spinal Cord Injury.

Adv Healthc Mater. 2023-10

[2]
Degradation products of crosslinked silk fibroin scaffolds modulate the immune response but not cell toxicity.

J Mater Chem B. 2023-4-26

[3]
Two-in-One Spider Silk Protein with Combined Mechanical Features in All-Aqueous Spun Fibers.

Biomacromolecules. 2023-4-10

[4]
Development of Silk Fibroin Scaffolds for Vascular Repair.

Biomacromolecules. 2023-3-13

[5]
Silk Fibroin-Based Tough Hydrogels with Strong Underwater Adhesion for Fast Hemostasis and Wound Sealing.

Biomacromolecules. 2023-1-9

[6]
Silk Fibroin as an Efficient Biomaterial for Drug Delivery, Gene Therapy, and Wound Healing.

Int J Mol Sci. 2022-11-20

[7]
Growth and differentiation of human induced pluripotent stem cell (hiPSC)-derived kidney organoids using fully synthetic peptide hydrogels.

Bioact Mater. 2022-8-19

[8]
Surface Biofunctionalization of Silk Biomaterials Using Dityrosine Cross-Linking.

ACS Appl Mater Interfaces. 2022-7-20

[9]
Silk Fibroin as a Bioink - A Thematic Review of Functionalization Strategies for Bioprinting Applications.

ACS Biomater Sci Eng. 2022-8-8

[10]
Enhanced Silk Fibroin/Sericin Composite Film: Preparation, Mechanical Properties and Mineralization Activity.

Polymers (Basel). 2022-6-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索