College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China.
College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
Nat Commun. 2023 Jun 23;14(1):3764. doi: 10.1038/s41467-023-39445-x.
It is challenging to grow atomically thin non-van der Waals perovskite due to the strong electronic coupling between adjacent layers. Here, we present a colloid-driven low supersaturation crystallization strategy to grow atomically thin CsBiBr. The colloid solution drives low-concentration solute in a supersaturation state, contributing to initial heterogeneous nucleation. Simultaneously, the colloids provide a stable precursor source in the low-concentration solute. The surfactant is absorbed in specific crystal nucleation facet resulting in the anisotropic growth of planar dominance. Ionic perovskite CsBiBr is readily grown from monolayered to six-layered CsBiBr corresponding to thicknesses of 0.7, 1.6, 2.7, 3.6, 4.6 and 5.7 nm. The atomically thin CsBiBr presents layer-dependent nonlinear optical performance and stacking-induced second harmonic generation. This work provides a concept for growing atomically thin halide perovskite with non-van der Waal structures and demonstrates potential application for atomically thin single crystals' growth with strong electronic coupling between adjacent layers.
由于相邻层之间的强电子耦合,生长原子级薄的非范德瓦尔斯钙钛矿是具有挑战性的。在这里,我们提出了一种胶体驱动的低过饱和度结晶策略来生长原子级薄的 CsBiBr。胶体溶液在过饱和状态下驱动低浓度溶质,有助于初始异相成核。同时,胶体在低浓度溶质中提供了一个稳定的前体源。表面活性剂被吸附在特定的晶体成核面上,导致各向异性的平面优势生长。离子钙钛矿 CsBiBr 很容易从单层生长到六层 CsBiBr,对应于 0.7、1.6、2.7、3.6、4.6 和 5.7nm 的厚度。原子级薄的 CsBiBr 表现出与层有关的非线性光学性能和堆叠诱导的二次谐波产生。这项工作为生长具有非范德瓦尔斯结构的原子级薄卤化物钙钛矿提供了一个概念,并展示了在相邻层之间具有强电子耦合的原子级薄单晶生长的潜在应用。