文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Rapidly adaptable automated interpretation of point-of-care COVID-19 diagnostics.

作者信息

Arumugam Siddarth, Ma Jiawei, Macar Uzay, Han Guangxing, McAulay Kathrine, Ingram Darrell, Ying Alex, Chellani Harshit Harpaldas, Chern Terry, Reilly Kenta, Colburn David A M, Stanciu Robert, Duffy Craig, Williams Ashley, Grys Thomas, Chang Shih-Fu, Sia Samuel K

机构信息

Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.

Department of Computer Science, Columbia University, New York, NY, 10027, USA.

出版信息

Commun Med (Lond). 2023 Jun 23;3(1):91. doi: 10.1038/s43856-023-00312-x.


DOI:10.1038/s43856-023-00312-x
PMID:37353603
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10290128/
Abstract

BACKGROUND: Point-of-care diagnostic devices, such as lateral-flow assays, are becoming widely used by the public. However, efforts to ensure correct assay operation and result interpretation rely on hardware that cannot be easily scaled or image processing approaches requiring large training datasets, necessitating large numbers of tests and expert labeling with validated specimens for every new test kit format. METHODS: We developed a software architecture called AutoAdapt POC that integrates automated membrane extraction, self-supervised learning, and few-shot learning to automate the interpretation of POC diagnostic tests using smartphone cameras in a scalable manner. A base model pre-trained on a single LFA kit is adapted to five different COVID-19 tests (three antigen, two antibody) using just 20 labeled images. RESULTS: Here we show AutoAdapt POC to yield 99% to 100% accuracy over 726 tests (350 positive, 376 negative). In a COVID-19 drive-through study with 74 untrained users self-testing, 98% found image collection easy, and the rapidly adapted models achieved classification accuracies of 100% on both COVID-19 antigen and antibody test kits. Compared with traditional visual interpretation on 105 test kit results, the algorithm correctly identified 100% of images; without a false negative as interpreted by experts. Finally, compared to a traditional convolutional neural network trained on an HIV test kit, the algorithm showed high accuracy while requiring only 1/50th of the training images. CONCLUSIONS: The study demonstrates how rapid domain adaptation in machine learning can provide quality assurance, linkage to care, and public health tracking for untrained users across diverse POC diagnostic tests.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70fe/10290128/310b0b95237a/43856_2023_312_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70fe/10290128/9cb4d482eb55/43856_2023_312_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70fe/10290128/219e507a95c2/43856_2023_312_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70fe/10290128/5fe452f59a65/43856_2023_312_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70fe/10290128/da40288f1094/43856_2023_312_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70fe/10290128/39cb4017146c/43856_2023_312_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70fe/10290128/b90871b52c9d/43856_2023_312_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70fe/10290128/310b0b95237a/43856_2023_312_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70fe/10290128/9cb4d482eb55/43856_2023_312_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70fe/10290128/219e507a95c2/43856_2023_312_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70fe/10290128/5fe452f59a65/43856_2023_312_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70fe/10290128/da40288f1094/43856_2023_312_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70fe/10290128/39cb4017146c/43856_2023_312_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70fe/10290128/b90871b52c9d/43856_2023_312_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70fe/10290128/310b0b95237a/43856_2023_312_Fig7_HTML.jpg

相似文献

[1]
Rapidly adaptable automated interpretation of point-of-care COVID-19 diagnostics.

Commun Med (Lond). 2023-6-23

[2]
Glaucoma diagnostics.

Acta Ophthalmol. 2013-2

[3]
The future of Cochrane Neonatal.

Early Hum Dev. 2020-11

[4]
Impact of the 2014 CDC HIV testing guidelines on detection of acute HIV infections.

J Clin Virol. 2022-1

[5]
Open-Source, Adaptable, All-in-One Smartphone-Based System for Quantitative Analysis of Point-of-Care Diagnostics.

Diagnostics (Basel). 2022-2-25

[6]
Lab-on-a-Disc for Point-of-Care Infection Diagnostics.

Acc Chem Res. 2021-10-5

[7]
Machine learning to support visual auditing of home-based lateral flow immunoassay self-test results for SARS-CoV-2 antibodies.

Commun Med (Lond). 2022-7-6

[8]
Evaluation of diagnostic performance of non-invasive HIV self-testing kit using oral fluid in Addis Ababa, Ethiopia: A facility-based cross-sectional study.

PLoS One. 2019-1-25

[9]
Evaluation of performance of two SARS-CoV-2 Rapid IgM-IgG combined antibody tests on capillary whole blood samples from the fingertip.

PLoS One. 2020-9-17

[10]
Evaluation of the accuracy and ease of use of a rapid HIV-1 Antibody Test performed by untrained operators at the point of care.

J Clin Virol. 2013-12

引用本文的文献

[1]
AI-enhanced rapid diagnostic testing platform for mass opisthorchiasis screening.

Sci Rep. 2025-8-23

[2]
Machine learning in point-of-care testing: innovations, challenges, and opportunities.

Nat Commun. 2025-4-2

[3]
Rapid and automated interpretation of CRISPR-Cas13-based lateral flow assay test results using machine learning.

Sens Diagn. 2024-12-26

[4]
Efficacy of the mLab App: a randomized clinical trial for increasing HIV testing uptake using mobile technology.

J Am Med Inform Assoc. 2025-2-1

[5]
Measuring the performance of computer vision artificial intelligence to interpret images of HIV self-testing results.

Front Public Health. 2024

本文引用的文献

[1]
Machine learning for determining lateral flow device results for testing of SARS-CoV-2 infection in asymptomatic populations.

Cell Rep Med. 2022-10-18

[2]
Machine learning to support visual auditing of home-based lateral flow immunoassay self-test results for SARS-CoV-2 antibodies.

Commun Med (Lond). 2022-7-6

[3]
Adequacy of Serial Self-performed SARS-CoV-2 Rapid Antigen Detection Testing for Longitudinal Mass Screening in the Workplace.

JAMA Netw Open. 2022-5-2

[4]
Development of a smartphone-based quantum dot lateral flow immunoassay strip for ultrasensitive detection of anti-SARS-CoV-2 IgG and neutralizing antibodies.

Int J Infect Dis. 2022-8

[5]
Assessing How Consumers Interpret and Act on Results From At-Home COVID-19 Self-test Kits: A Randomized Clinical Trial.

JAMA Intern Med. 2022-3-1

[6]
A Novel Method for Quantitative Analysis of C-Reactive Protein Lateral Flow Immunoassays Images via CMOS Sensor and Recurrent Neural Networks.

IEEE J Transl Eng Health Med. 2021-11-23

[7]
Point-of-care diagnostics: recent developments in a pandemic age.

Lab Chip. 2021-11-25

[8]
Recent Advances in Novel Lateral Flow Technologies for Detection of COVID-19.

Biosensors (Basel). 2021-8-25

[9]
The new platforms of health care.

NPJ Digit Med. 2021-7-15

[10]
User experience analysis of AbC-19 Rapid Test via lateral flow immunoassays for self-administrated SARS-CoV-2 antibody testing.

Sci Rep. 2021-7-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索