文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种通过CMOS传感器和循环神经网络对C反应蛋白侧向流动免疫分析图像进行定量分析的新方法。

A Novel Method for Quantitative Analysis of C-Reactive Protein Lateral Flow Immunoassays Images via CMOS Sensor and Recurrent Neural Networks.

作者信息

Jing Min, Mclaughlin Donal, Mcnamee Sara E, Raj Shasidran, Namee Brian Mac, Steele David, Finlay Dewar, Mclaughlin James

机构信息

School of EngineeringUlster University Jordanstown BT37 0QB U.K.

Department of Physics and AstronomyUniversity College London London WC1E 6BT U.K.

出版信息

IEEE J Transl Eng Health Med. 2021 Nov 23;9:1900415. doi: 10.1109/JTEHM.2021.3130494. eCollection 2021.


DOI:10.1109/JTEHM.2021.3130494
PMID:34873497
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8641912/
Abstract

To design and implement an easy-to-use, Point-of-Care (PoC) lateral flow immunoassays (LFA) reader and data analysis system, which provides a more in-depth quantitative analysis for LFA images than conventional approaches thereby supporting efficient decision making for potential early risk assessment of cardiovascular disease (CVD). A novel end-to-end system was developed including a portable device with CMOS camera integrated with optimized illumination and optics to capture the LFA images produced using high-sensitivity C-Reactive Protein (hsCRP) (concentration level < 5 mg/L). The images were transmitted via WiFi to a back-end server system for image analysis and classification. Unlike common image classification approaches which are based on averaging image intensity from a region-of-interest (ROI), a novel approach was developed which considered the signal along the sample's flow direction as a time series and, consequently, no need for ROI detection. Long Short-Term Memory (LSTM) networks were deployed for multilevel classification. The features based on Dynamic Time Warping (DTW) and histogram bin counts (HBC) were explored for classification. For the classification of hsCRP, the LSTM outperformed the traditional machine learning classifiers with or without DTW and HBC features performed the best (with mean accuracy of 94%) compared to other features. Application of the proposed method to human plasma also suggests that HBC features from LFA time series performed better than the mean from ROI and raw LFA data. As a proof of concept, the results demonstrate the capability of the proposed framework for quantitative analysis of LFA images and suggest the potential for early risk assessment of CVD. The hsCRP levels < 5 mg/L were aligned with clinically actionable categories for early risk assessment of CVD. The outcomes demonstrated the real-world applicability of the proposed system for quantitative analysis of LFA images, which is potentially useful for more LFA applications beyond presented in this study.

摘要

设计并实现一个易于使用的即时检测(PoC)侧向流动免疫分析(LFA)阅读器和数据分析系统,该系统能为LFA图像提供比传统方法更深入的定量分析,从而支持对心血管疾病(CVD)潜在早期风险评估进行高效决策。开发了一种新颖的端到端系统,包括一个集成了CMOS相机、优化照明和光学元件的便携式设备,用于捕获使用高灵敏度C反应蛋白(hsCRP)(浓度水平<5mg/L)产生的LFA图像。图像通过WiFi传输到后端服务器系统进行图像分析和分类。与基于感兴趣区域(ROI)平均图像强度的常见图像分类方法不同,开发了一种新颖的方法,该方法将沿样本流动方向的信号视为时间序列,因此无需进行ROI检测。部署了长短期记忆(LSTM)网络进行多级分类。探索了基于动态时间规整(DTW)和直方图箱计数(HBC)的特征进行分类。对于hsCRP的分类,LSTM优于传统机器学习分类器,与其他特征相比,具有DTW和HBC特征的分类器表现最佳(平均准确率为94%)。将所提出的方法应用于人体血浆也表明,来自LFA时间序列的HBC特征比ROI平均值和原始LFA数据表现更好。作为概念验证,结果证明了所提出框架对LFA图像进行定量分析的能力,并表明了CVD早期风险评估的潜力。hsCRP水平<5mg/L与CVD早期风险评估的临床可操作类别一致。结果证明了所提出系统对LFA图像进行定量分析的实际适用性,这对于本研究中未涉及的更多LFA应用可能具有潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/3487dd57296b/jing14-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/5d02f11e8ae0/jing1abcdefg-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/e948e7cd78dd/jing2-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/e32e185e8a0f/jing3-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/0646c2156ade/jing4-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/9f8fc49aec84/jing5-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/bbaeeed68ed8/jing6-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/956963c71d96/jing7-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/da593f5b9c89/jing8ab-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/075ab39012ea/jing9ab-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/f4c5f53b9ecd/jing10ab-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/9698e6fc044c/jing11-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/7d6f5abc9412/jing12abcd-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/ae4bb9f61bc3/jing13-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/3487dd57296b/jing14-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/5d02f11e8ae0/jing1abcdefg-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/e948e7cd78dd/jing2-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/e32e185e8a0f/jing3-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/0646c2156ade/jing4-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/9f8fc49aec84/jing5-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/bbaeeed68ed8/jing6-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/956963c71d96/jing7-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/da593f5b9c89/jing8ab-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/075ab39012ea/jing9ab-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/f4c5f53b9ecd/jing10ab-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/9698e6fc044c/jing11-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/7d6f5abc9412/jing12abcd-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/ae4bb9f61bc3/jing13-3130494.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ff/8641912/3487dd57296b/jing14-3130494.jpg

相似文献

[1]
A Novel Method for Quantitative Analysis of C-Reactive Protein Lateral Flow Immunoassays Images via CMOS Sensor and Recurrent Neural Networks.

IEEE J Transl Eng Health Med. 2021-11-23

[2]
A novel patches-selection method for the classification of point-of-care biosensing lateral flow assays with cardiac biomarkers.

Biosens Bioelectron. 2023-3-1

[3]
Analyte Quantity Detection from Lateral Flow Assay Using a Smartphone.

Sensors (Basel). 2019-11-5

[4]
One-Component Dual-Readout Aggregation-Induced Emission Nanobeads for Qualitative and Quantitative Detection of C-Reactive Protein at the Point of Care.

Anal Chem. 2024-1-9

[5]
A three-line lateral flow assay strip for the measurement of C-reactive protein covering a broad physiological concentration range in human sera.

Biosens Bioelectron. 2014-5-14

[6]
Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.

Med Phys. 2017-6-9

[7]
Development and optimization of thermal contrast amplification lateral flow immunoassays for ultrasensitive HIV p24 protein detection.

Microsyst Nanoeng. 2020-7-27

[8]
Point-of-Care Monitoring of Respiratory Diseases Using Lateral Flow Assay and CMOS Camera Reader.

IEEE J Transl Eng Health Med. 2022

[9]
A Novel Method for Classifying Liver and Brain Tumors Using Convolutional Neural Networks, Discrete Wavelet Transform and Long Short-Term Memory Networks.

Sensors (Basel). 2019-4-28

[10]
Determining grasp selection from arm trajectories via deep learning to enable functional hand movement in tetraplegia.

Bioelectron Med. 2020-8-25

引用本文的文献

[1]
Enhancing Sensitivity of Point-of-Care Thyroid Diagnosis via Computational Analysis of Lateral Flow Assay Images Using Novel Textural Features and Hybrid-AI Models.

Biosensors (Basel). 2024-12-13

[2]
Rapidly adaptable automated interpretation of point-of-care COVID-19 diagnostics.

Commun Med (Lond). 2023-6-23

[3]
Point-of-Care Monitoring of Respiratory Diseases Using Lateral Flow Assay and CMOS Camera Reader.

IEEE J Transl Eng Health Med. 2022

本文引用的文献

[1]
User experience analysis of AbC-19 Rapid Test via lateral flow immunoassays for self-administrated SARS-CoV-2 antibody testing.

Sci Rep. 2021-7-7

[2]
Evaluation of the IgG antibody response to SARS CoV-2 infection and performance of a lateral flow immunoassay: cross-sectional and longitudinal analysis over 11 months.

BMJ Open. 2021-6-29

[3]
Usability and Acceptability of Home-based Self-testing for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antibodies for Population Surveillance.

Clin Infect Dis. 2021-5-4

[4]
Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study.

Lancet. 2020-7-6

[5]
Diagnostic performance and usability of the VISITECT CD4 semi-quantitative test for advanced HIV disease screening.

PLoS One. 2020-4-3

[6]
Home pregnancy tests in the hands of the intended user.

J Immunoassay Immunochem. 2019

[7]
Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia.

PLoS One. 2019-5-20

[8]
ECG signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network.

Physiol Meas. 2018-9-24

[9]
Application of Commutable ERM-DA474/IFCC for Harmonization of C-reactive Protein Measurement Using Five Analytical Assays.

Clin Lab. 2017-11-1

[10]
Mobile phone-based biosensing: An emerging "diagnostic and communication" technology.

Biosens Bioelectron. 2016-10-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索