文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习助力居家新冠病毒抗体侧向流动免疫分析自测结果的视觉审核

Machine learning to support visual auditing of home-based lateral flow immunoassay self-test results for SARS-CoV-2 antibodies.

作者信息

Wong Nathan C K, Meshkinfamfard Sepehr, Turbé Valérian, Whitaker Matthew, Moshe Maya, Bardanzellu Alessia, Dai Tianhong, Pignatelli Eduardo, Barclay Wendy, Darzi Ara, Elliott Paul, Ward Helen, Tanaka Reiko J, Cooke Graham S, McKendry Rachel A, Atchison Christina J, Bharath Anil A

机构信息

Department of Bioengineering, Imperial College London, London, UK.

London Centre for Nanotechnology, University College London, London, UK.

出版信息

Commun Med (Lond). 2022 Jul 6;2:78. doi: 10.1038/s43856-022-00146-z. eCollection 2022.


DOI:10.1038/s43856-022-00146-z
PMID:35814295
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9259560/
Abstract

BACKGROUND: Lateral flow immunoassays (LFIAs) are being used worldwide for COVID-19 mass testing and antibody prevalence studies. Relatively simple to use and low cost, these tests can be self-administered at home, but rely on subjective interpretation of a test line by eye, risking false positives and false negatives. Here, we report on the development of ALFA (Automated Lateral Flow Analysis) to improve reported sensitivity and specificity. METHODS: Our computational pipeline uses machine learning, computer vision techniques and signal processing algorithms to analyse images of the Fortress LFIA SARS-CoV-2 antibody self-test, and subsequently classify results as invalid, IgG negative and IgG positive. A large image library of 595,339 participant-submitted test photographs was created as part of the REACT-2 community SARS-CoV-2 antibody prevalence study in England, UK. Alongside ALFA, we developed an analysis toolkit which could also detect device blood leakage issues. RESULTS: Automated analysis showed substantial agreement with human experts (Cohen's kappa 0.90-0.97) and performed consistently better than study participants, particularly for weak positive IgG results. Specificity (98.7-99.4%) and sensitivity (90.1-97.1%) were high compared with visual interpretation by human experts (ranges due to the varying prevalence of weak positive IgG tests in datasets). CONCLUSIONS: Given the potential for LFIAs to be used at scale in the COVID-19 response (for both antibody and antigen testing), even a small improvement in the accuracy of the algorithms could impact the lives of millions of people by reducing the risk of false-positive and false-negative result read-outs by members of the public. Our findings support the use of machine learning-enabled automated reading of at-home antibody lateral flow tests as a tool for improved accuracy for population-level community surveillance.

摘要

背景:横向流动免疫分析法(LFIAs)正在全球范围内用于新冠病毒大规模检测和抗体流行率研究。这些检测使用相对简单且成本低廉,可在家自行操作,但依赖于肉眼对检测线的主观判断,存在假阳性和假阴性的风险。在此,我们报告了用于提高报告的灵敏度和特异性的ALFA(自动横向流动分析)技术的开发情况。 方法:我们的计算流程使用机器学习、计算机视觉技术和信号处理算法来分析Fortress LFIA新冠病毒2型抗体自检的图像,随后将结果分类为无效、IgG阴性和IgG阳性。作为英国英格兰REACT-2社区新冠病毒2型抗体流行率研究的一部分,创建了一个由595339张参与者提交的检测照片组成的大型图像库。除了ALFA,我们还开发了一个分析工具包,该工具包还可以检测设备血液泄漏问题。 结果:自动分析与人类专家的结果高度一致(科恩kappa系数为0.90 - 0.97),并且表现始终优于研究参与者,尤其是对于弱阳性IgG结果。与人类专家的视觉判读相比,特异性(98.7 - 99.4%)和灵敏度(90.1 - 97.1%)较高(由于数据集中弱阳性IgG检测的流行率不同,范围有所差异)。 结论:鉴于横向流动免疫分析法在新冠疫情应对中大规模使用的潜力(用于抗体和抗原检测),算法准确性的哪怕是微小提高,都可能通过降低公众误判假阳性和假阴性结果的风险,对数以百万计的人的生活产生影响。我们的研究结果支持使用基于机器学习的自动读取家用抗体横向流动检测结果,作为提高人群水平社区监测准确性的一种工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da4b/9259560/0fd054ae662d/43856_2022_146_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da4b/9259560/bf5675131303/43856_2022_146_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da4b/9259560/482556713798/43856_2022_146_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da4b/9259560/0fd054ae662d/43856_2022_146_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da4b/9259560/bf5675131303/43856_2022_146_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da4b/9259560/482556713798/43856_2022_146_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da4b/9259560/0fd054ae662d/43856_2022_146_Fig3_HTML.jpg

相似文献

[1]
Machine learning to support visual auditing of home-based lateral flow immunoassay self-test results for SARS-CoV-2 antibodies.

Commun Med (Lond). 2022-7-6

[2]
Antibody tests for identification of current and past infection with SARS-CoV-2.

Cochrane Database Syst Rev. 2020-6-25

[3]
Validity of Self-testing at Home With Rapid Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Detection by Lateral Flow Immunoassay.

Clin Infect Dis. 2023-2-18

[4]
Antibody tests for identification of current and past infection with SARS-CoV-2.

Cochrane Database Syst Rev. 2022-11-17

[5]
Association of Results of Four Lateral Flow Antibody Tests with Subsequent SARS-CoV-2 Infection.

Microbiol Spectr. 2022-10-26

[6]
Acceptability, Usability, and Performance of Lateral Flow Immunoassay Tests for Severe Acute Respiratory Syndrome Coronavirus 2 Antibodies: REACT-2 Study of Self-Testing in Nonhealthcare Key Workers.

Open Forum Infect Dis. 2021-10-4

[7]
SARS-CoV-2 lateral flow assays for possible use in national covid-19 seroprevalence surveys (React 2): diagnostic accuracy study.

BMJ. 2021-3-2

[8]
Accuracy of four lateral flow immunoassays for anti SARS-CoV-2 antibodies: a head-to-head comparative study.

EBioMedicine. 2021-6

[9]
User experience of home-based AbC-19 SARS-CoV-2 antibody rapid lateral flow immunoassay test.

Sci Rep. 2022-1-21

[10]
A prospective, randomized, single-blinded, crossover trial to investigate the effect of a wearable device in addition to a daily symptom diary for the Remote Early Detection of SARS-CoV-2 infections (COVID-RED): a structured summary of a study protocol for a randomized controlled trial.

Trials. 2021-10-11

引用本文的文献

[1]
Enhancing Sensitivity of Commercial Gold Nanoparticle-Based Lateral Flow Assays: A Comparative Study of Colorimetric and Photothermal Approaches.

Sensors (Basel). 2025-8-8

[2]
A Wearable In-Pad Diagnostic for the Detection of Disease Biomarkers in Menstruation Blood.

Adv Sci (Weinh). 2025-8

[3]
Machine learning in point-of-care testing: innovations, challenges, and opportunities.

Nat Commun. 2025-4-2

[4]
Machine Learning-Based Quantification of Lateral Flow Assay Using Smartphone-Captured Images.

Biosensors (Basel). 2025-1-4

[5]
Rapid and automated interpretation of CRISPR-Cas13-based lateral flow assay test results using machine learning.

Sens Diagn. 2024-12-26

[6]
Efficacy of the mLab App: a randomized clinical trial for increasing HIV testing uptake using mobile technology.

J Am Med Inform Assoc. 2025-2-1

[7]
Sample preparation and detection methods in point-of-care devices towards future at-home testing.

Lab Chip. 2024-7-23

[8]
Isothermal Nucleic Acid Amplification-Based Lateral Flow Testing for the Detection of Plant Viruses.

Int J Mol Sci. 2024-4-11

[9]
Measuring the performance of computer vision artificial intelligence to interpret images of HIV self-testing results.

Front Public Health. 2024

[10]
COVID-19 lateral flow test image classification using deep CNN and StyleGAN2.

Front Artif Intell. 2024-1-29

本文引用的文献

[1]
Acceptability, Usability, and Performance of Lateral Flow Immunoassay Tests for Severe Acute Respiratory Syndrome Coronavirus 2 Antibodies: REACT-2 Study of Self-Testing in Nonhealthcare Key Workers.

Open Forum Infect Dis. 2021-10-4

[2]
Deep learning of HIV field-based rapid tests.

Nat Med. 2021-7

[3]
REal-time Assessment of Community Transmission (REACT) of SARS-CoV-2 virus: Study protocol.

Wellcome Open Res. 2021-4-21

[4]
Prevalence of antibody positivity to SARS-CoV-2 following the first peak of infection in England: Serial cross-sectional studies of 365,000 adults.

Lancet Reg Health Eur. 2021-5

[5]
Antibody testing for COVID-19: A report from the National COVID Scientific Advisory Panel.

Wellcome Open Res. 2020-6-11

[6]
Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation.

Proc Natl Acad Sci U S A. 2021-3-23

[7]
Clinical and laboratory evaluation of SARS-CoV-2 lateral flow assays for use in a national COVID-19 seroprevalence survey.

Thorax. 2020-8-12

[8]
Usability and Acceptability of Home-based Self-testing for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antibodies for Population Surveillance.

Clin Infect Dis. 2021-5-4

[9]
Seroprevalence of Antibodies to SARS-CoV-2 in 10 Sites in the United States, March 23-May 12, 2020.

JAMA Intern Med. 2020-7-21

[10]
Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study.

Lancet. 2020-7-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索