Wong Nathan C K, Meshkinfamfard Sepehr, Turbé Valérian, Whitaker Matthew, Moshe Maya, Bardanzellu Alessia, Dai Tianhong, Pignatelli Eduardo, Barclay Wendy, Darzi Ara, Elliott Paul, Ward Helen, Tanaka Reiko J, Cooke Graham S, McKendry Rachel A, Atchison Christina J, Bharath Anil A
Department of Bioengineering, Imperial College London, London, UK.
London Centre for Nanotechnology, University College London, London, UK.
Commun Med (Lond). 2022 Jul 6;2:78. doi: 10.1038/s43856-022-00146-z. eCollection 2022.
BACKGROUND: Lateral flow immunoassays (LFIAs) are being used worldwide for COVID-19 mass testing and antibody prevalence studies. Relatively simple to use and low cost, these tests can be self-administered at home, but rely on subjective interpretation of a test line by eye, risking false positives and false negatives. Here, we report on the development of ALFA (Automated Lateral Flow Analysis) to improve reported sensitivity and specificity. METHODS: Our computational pipeline uses machine learning, computer vision techniques and signal processing algorithms to analyse images of the Fortress LFIA SARS-CoV-2 antibody self-test, and subsequently classify results as invalid, IgG negative and IgG positive. A large image library of 595,339 participant-submitted test photographs was created as part of the REACT-2 community SARS-CoV-2 antibody prevalence study in England, UK. Alongside ALFA, we developed an analysis toolkit which could also detect device blood leakage issues. RESULTS: Automated analysis showed substantial agreement with human experts (Cohen's kappa 0.90-0.97) and performed consistently better than study participants, particularly for weak positive IgG results. Specificity (98.7-99.4%) and sensitivity (90.1-97.1%) were high compared with visual interpretation by human experts (ranges due to the varying prevalence of weak positive IgG tests in datasets). CONCLUSIONS: Given the potential for LFIAs to be used at scale in the COVID-19 response (for both antibody and antigen testing), even a small improvement in the accuracy of the algorithms could impact the lives of millions of people by reducing the risk of false-positive and false-negative result read-outs by members of the public. Our findings support the use of machine learning-enabled automated reading of at-home antibody lateral flow tests as a tool for improved accuracy for population-level community surveillance.
背景:横向流动免疫分析法(LFIAs)正在全球范围内用于新冠病毒大规模检测和抗体流行率研究。这些检测使用相对简单且成本低廉,可在家自行操作,但依赖于肉眼对检测线的主观判断,存在假阳性和假阴性的风险。在此,我们报告了用于提高报告的灵敏度和特异性的ALFA(自动横向流动分析)技术的开发情况。 方法:我们的计算流程使用机器学习、计算机视觉技术和信号处理算法来分析Fortress LFIA新冠病毒2型抗体自检的图像,随后将结果分类为无效、IgG阴性和IgG阳性。作为英国英格兰REACT-2社区新冠病毒2型抗体流行率研究的一部分,创建了一个由595339张参与者提交的检测照片组成的大型图像库。除了ALFA,我们还开发了一个分析工具包,该工具包还可以检测设备血液泄漏问题。 结果:自动分析与人类专家的结果高度一致(科恩kappa系数为0.90 - 0.97),并且表现始终优于研究参与者,尤其是对于弱阳性IgG结果。与人类专家的视觉判读相比,特异性(98.7 - 99.4%)和灵敏度(90.1 - 97.1%)较高(由于数据集中弱阳性IgG检测的流行率不同,范围有所差异)。 结论:鉴于横向流动免疫分析法在新冠疫情应对中大规模使用的潜力(用于抗体和抗原检测),算法准确性的哪怕是微小提高,都可能通过降低公众误判假阳性和假阴性结果的风险,对数以百万计的人的生活产生影响。我们的研究结果支持使用基于机器学习的自动读取家用抗体横向流动检测结果,作为提高人群水平社区监测准确性的一种工具。
Cochrane Database Syst Rev. 2020-6-25
Cochrane Database Syst Rev. 2022-11-17
Microbiol Spectr. 2022-10-26
Adv Sci (Weinh). 2025-8
Biosensors (Basel). 2025-1-4
J Am Med Inform Assoc. 2025-2-1
Front Artif Intell. 2024-1-29
Nat Med. 2021-7
Wellcome Open Res. 2021-4-21
Wellcome Open Res. 2020-6-11
Proc Natl Acad Sci U S A. 2021-3-23
JAMA Intern Med. 2020-7-21