Herzog-Arbeitman Jonah, Song Zhi-Da, Regnault Nicolas, Bernevig B Andrei
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris 75005, France.
Phys Rev Lett. 2020 Dec 4;125(23):236804. doi: 10.1103/PhysRevLett.125.236804.
The Hofstadter problem is the lattice analog of the quantum Hall effect and is the paradigmatic example of topology induced by an applied magnetic field. Conventionally, the Hofstadter problem involves adding ∼10^{4} T magnetic fields to a trivial band structure. In this Letter, we show that when a magnetic field is added to an initially topological band structure, a wealth of possible phases emerges. Remarkably, we find topological phases that cannot be realized in any crystalline insulators. We prove that threading magnetic flux through a Hamiltonian with a nonzero Chern number or mirror Chern number enforces a phase transition at fixed filling and that a 2D Hamiltonian with a nontrivial Kane-Mele invariant can be classified as a 3D topological insulator (TI) or 3D weak TI phase in periodic flux. We then study fragile topology protected by the product of twofold rotation and time reversal and show that there exists a higher order TI phase where corner modes are pumped by flux. We show that a model of twisted bilayer graphene realizes this phase. Our results rely primarily on the magnetic translation group that exists at rational values of the flux. The advent of Moiré lattices renders our work relevant experimentally. Due to the enlarged Moiré unit cell, it is possible for laboratory-strength fields to reach one flux per plaquette and allow access to our proposed Hofstadter topological phase.
霍夫施塔特问题是量子霍尔效应的晶格类似物,是由外加磁场诱导拓扑的典型例子。传统上,霍夫施塔特问题涉及在平凡能带结构中添加约10⁴ T的磁场。在本信函中,我们表明,当磁场添加到初始拓扑能带结构中时,会出现大量可能的相。值得注意的是,我们发现了在任何晶体绝缘体中都无法实现的拓扑相。我们证明,通过具有非零陈数或镜面陈数的哈密顿量引入磁通量会在固定填充时强制发生相变,并且具有非平凡凯恩 - 梅勒不变量的二维哈密顿量在周期性磁通量下可被分类为三维拓扑绝缘体(TI)或三维弱TI相。然后,我们研究由双重旋转和时间反演的乘积保护的脆弱拓扑,并表明存在一种高阶TI相,其中角模式由磁通量泵浦。我们表明扭曲双层石墨烯模型实现了这个相。我们的结果主要依赖于在磁通量的有理数值处存在的磁平移群。莫尔晶格的出现使我们的工作在实验上具有相关性。由于莫尔晶胞的增大,实验室强度的磁场有可能达到每个格点一个磁通量,并能够实现我们提出的霍夫施塔特拓扑相。