Kos Dean, Assumpcao Daniel R, Guo Chenyang, Baumberg Jeremy J
NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, United Kingdom.
ACS Nano. 2021 Sep 28;15(9):14535-14543. doi: 10.1021/acsnano.1c04100. Epub 2021 Aug 26.
Molecular junctions offer the opportunity for downscaling optoelectronic devices. Separating two electrodes with a single layer of molecules accesses the quantum-tunneling regime at low voltages (<1 V), where tunneling currents become highly sensitive to local nanometer-scale geometric features of the electrodes. These features generate asymmetries in the electrical response of the junction which combine with the incident oscillating optical fields to produce optical rectification and photocurrents. Maximizing photocurrents requires accurate control of the overall junction geometry and a large confined optical field in the optimal location. Plasmonic nanostructures such as metallic nanoparticles are prime candidates for this application, because their size and shape dictate a consistent junction geometry while strongly enhancing the optical field from incident light. Here we demonstrate a robust lithography-free molecular optoelectronic device geometry, where a metallic nanoparticle on a self-assembled molecular monolayer is sandwiched between planar bottom and semitransparent top electrodes, to create molecular junctions with reproducible morphology and electrical response. The well-defined geometry enables predictable and intense plasmonic localization, which we show creates optical-frequency voltages ∼ 30 mV in the molecular junction from 100 μW incident light, generating photocurrent by optical rectification (>10 μA/W) from only a few hundred molecules. Quantitative agreement is thus obtained between DC- and optical-frequency quantum-tunneling currents, predicted by a simple analytic equation. By measuring the degree of junction asymmetry for different molecular monolayers, we find that molecules with a large DC rectification ratio also boost zero-bias electrical asymmetry, making them good candidates for sensing and energy harvesting applications in combination with plasmonic nanomaterials.
分子结为缩小光电器件的尺寸提供了机会。用单层分子分隔两个电极可在低电压(<1 V)下进入量子隧穿状态,此时隧穿电流对电极的局部纳米级几何特征变得高度敏感。这些特征在结的电响应中产生不对称性,与入射的振荡光场相结合,产生光整流和光电流。要使光电流最大化,需要精确控制整个结的几何形状,并在最佳位置产生大的受限光场。诸如金属纳米颗粒之类的等离子体纳米结构是此应用的主要候选者,因为它们的尺寸和形状决定了一致的结几何形状,同时能强烈增强入射光的光场。在这里,我们展示了一种稳健的无光刻分子光电器件几何结构,其中自组装分子单层上的金属纳米颗粒夹在平面底部电极和半透明顶部电极之间,以创建具有可重复形态和电响应的分子结。明确的几何形状实现了可预测且强烈的等离子体定位,我们证明,从100 μW的入射光在分子结中产生了约30 mV的光频电压,仅通过几百个分子的光整流产生光电流(>10 μA/W)。因此,通过一个简单的解析方程预测的直流和光频量子隧穿电流之间获得了定量一致性。通过测量不同分子单层的结不对称程度,我们发现具有大直流整流比的分子也会增强零偏置电不对称性,这使得它们与等离子体纳米材料结合时成为传感和能量收集应用的良好候选者。