School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA.
J Biol Chem. 2023 Aug;299(8):104947. doi: 10.1016/j.jbc.2023.104947. Epub 2023 Jun 22.
Activated G protein-coupled receptors promote the dissociation of heterotrimeric G proteins into Gα and Gβγ subunits that bind to effector proteins to drive intracellular signaling responses. In yeast, Gβγ subunits coordinate the simultaneous activation of multiple signaling axes in response to mating pheromones, including MAP kinase (MAPK)-dependent transcription, cell polarization, and cell cycle arrest responses. The Gγ subunit in this complex contains an N-terminal intrinsically disordered region that governs Gβγ-dependent signal transduction in yeast and mammals. Here, we demonstrate that N-terminal intrinsic disorder is likely an ancestral feature that has been conserved across different Gγ subtypes and organisms. To understand the functional contribution of structural disorder in this region, we introduced precise point mutations that produce a stepwise disorder-to-order transition in the N-terminal tail of the canonical yeast Gγ subunit, Ste18. Mutant tail structures were confirmed using circular dichroism and molecular dynamics and then substituted for the wildtype gene in yeast. We find that increasing the number of helix-stabilizing mutations, but not isometric mutation controls, has a negative and proteasome-independent effect on Ste18 protein levels as well as a differential effect on pheromone-induced levels of active MAPK/Fus3, but not MAPK/Kss1. When expressed at wildtype levels, we further show that mutants with an alpha-helical N terminus exhibit a counterintuitive shift in Gβγ signaling that reduces active MAPK/Fus3 levels whilst increasing cell polarization and cell cycle arrest. These data reveal a role for Gγ subunit intrinsically disordered regions in governing the balance between multiple Gβγ signaling axes.
激活的 G 蛋白偶联受体促进异三聚体 G 蛋白的解离为 Gα 和 Gβγ 亚基,这些亚基与效应蛋白结合以驱动细胞内信号转导反应。在酵母中,Gβγ 亚基协调多条信号通路的同时激活,以响应交配信息素,包括 MAP 激酶(MAPK)依赖性转录、细胞极化和细胞周期阻滞反应。该复合物中的 Gγ 亚基含有一个 N 端固有无序区域,该区域控制酵母和哺乳动物中 Gβγ 依赖性信号转导。在这里,我们证明 N 端固有无序可能是一个古老的特征,在不同的 Gγ 亚型和生物体中都得到了保守。为了了解该区域结构无序的功能贡献,我们引入了精确的点突变,这些突变在典型的酵母 Gγ 亚基 Ste18 的 N 端尾部产生了逐步的无序到有序的转变。使用圆二色性和分子动力学证实了突变尾部结构,然后将其取代酵母中的野生型基因。我们发现,增加螺旋稳定突变的数量,但不是等距突变控制,对 Ste18 蛋白水平具有负向和蛋白酶体独立的影响,并且对信息素诱导的活性 MAPK/Fus3 水平具有差异影响,但对 MAPK/Kss1 水平没有影响。当在野生型水平表达时,我们进一步表明,具有α螺旋 N 端的突变体表现出一种反直觉的 Gβγ 信号转导转变,降低了活性 MAPK/Fus3 水平,同时增加了细胞极化和细胞周期阻滞。这些数据揭示了 Gγ 亚基固有无序区域在调节多条 Gβγ 信号通路之间的平衡中的作用。