Suppr超能文献

临床决策系统中基于规则推理和机器学习的混合架构分类:范围综述。

Taxonomy of hybrid architectures involving rule-based reasoning and machine learning in clinical decision systems: A scoping review.

机构信息

Lodz University of Technology, Faculty of Electrical, Electronic, Computer and Control Engineering, 27 Isabella Street, 02116 Boston, MA, USA.

Lodz University of Technology, Faculty of Electrical, Electronic, Computer and Control Engineering, 18/22 Stefanowskiego St., 90-924 Łodź, Poland.

出版信息

J Biomed Inform. 2023 Aug;144:104428. doi: 10.1016/j.jbi.2023.104428. Epub 2023 Jun 22.

Abstract

BACKGROUND

As the application of Artificial Intelligence (AI) technologies increases in the healthcare sector, the industry faces a need to combine medical knowledge, often expressed as clinical rules, with advances in machine learning (ML), which offer high prediction accuracy at the expense of transparency of decision making.

PURPOSE

This paper seeks to review the present literature, identify hybrid architecture patterns that incorporate rules and machine learning, and evaluate the rationale behind their selection to inform future development and research on the design of transparent and precise clinical decision systems.

METHODS

PubMed, IEEE Explore, and Google Scholar were queried in search for papers from 1992 to 2022, with the keywords: "clinical decision system", "hybrid clinical architecture", "machine learning and clinical rules". Excluded articles did not use both ML and rules or did not provide any explanation of employed architecture. A proposed taxonomy was used to organize the results, analyze them, and depict them in graphical and tabular form. Two researchers, one with expertise in rule-based systems and another in ML, reviewed identified papers and discussed the work to minimize bias, and the third one re-reviewed the work to ensure consistency of reporting.

RESULTS

The authors screened 957 papers and reviewed 71 that met their criteria. Five distinct architecture archetypes were determined: Rules are Embedded in ML architecture (REML) (most used), ML pre-processes input data for Rule-Based inference (MLRB), Rule-Based method pre-processes input data for ML prediction (RBML), Rules influence ML training (RMLT), Parallel Ensemble of Rules and ML (PERML), which was rarely observed in clinical contexts.

CONCLUSIONS

Most architectures in the reviewed literature prioritize prediction accuracy over explainability and trustworthiness, which has led to more complex embedded approaches. Alternatively, parallel (PERML) architectures may be employed, allowing for a more transparent system that is easier to explain to patients and clinicians. The potential of this approach warrants further research.

OTHER

A limitation of the study may be that it reviews scientific literature, while algorithms implemented in clinical practice may present different distributions of motivations and implementations of hybrid architectures.

摘要

背景

随着人工智能 (AI) 技术在医疗保健领域的应用不断增加,该行业面临着将医学知识(通常以临床规则的形式表达)与机器学习 (ML) 的进步相结合的需求,后者以牺牲决策制定的透明度为代价提供了高预测准确性。

目的

本文旨在回顾现有文献,确定结合规则和机器学习的混合架构模式,并评估选择这些模式的基本原理,以为透明和精确的临床决策系统设计的未来发展和研究提供信息。

方法

通过在 PubMed、IEEE Explore 和 Google Scholar 上查询,检索了 1992 年至 2022 年的文献,关键词为“临床决策系统”、“混合临床架构”、“机器学习和临床规则”。排除了未同时使用 ML 和规则或未说明所采用架构的文章。使用了一种分类法来组织、分析和以图形和表格形式表示结果。两位研究人员,一位具有规则系统方面的专业知识,另一位具有 ML 方面的专业知识,对确定的论文进行了审查并讨论了工作以最大程度地减少偏差,第三位研究人员对工作进行了重新审查以确保报告的一致性。

结果

作者筛选了 957 篇论文,审查了符合标准的 71 篇论文。确定了五种不同的架构原型:规则嵌入在机器学习架构中(REML)(最常用)、机器学习预处理规则推理的输入数据(MLRB)、规则推理预处理机器学习预测的输入数据(RBML)、规则影响机器学习训练(RMLT)、规则和机器学习的并行集成(PERML),在临床环境中很少观察到这种方法。

结论

文献中综述的大多数架构都优先考虑预测准确性,而不是可解释性和可信度,这导致了更复杂的嵌入式方法。相反,可以采用并行(PERML)架构,从而构建一个更透明的系统,更容易向患者和临床医生解释。这种方法的潜力值得进一步研究。

其他

该研究的一个局限性可能是它仅回顾了科学文献,而在临床实践中实施的算法可能具有不同的动机分布和混合架构的实现方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验