Suppr超能文献

在晕厥管理方面,人工智能会比人类“更出色”吗?

Will Artificial Intelligence Be "Better" Than Humans in the Management of Syncope?

作者信息

Dipaola Franca, Gebska Milena A, Gatti Mauro, Levra Alessandro Giaj, Parker William H, Menè Roberto, Lee Sangil, Costantino Giorgio, Barsotti E John, Shiffer Dana, Johnston Samuel L, Sutton Richard, Olshansky Brian, Furlan Raffaello

机构信息

Internal Medicine, IRCCS Humanitas Research Hospital, Rozzano, Italy.

Division of Cardiovascular Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.

出版信息

JACC Adv. 2024 Jul 31;3(9):101072. doi: 10.1016/j.jacadv.2024.101072. eCollection 2024 Sep.

Abstract

Clinical decision-making regarding syncope poses challenges, with risk of physician error due to the elusive nature of syncope pathophysiology, diverse presentations, heterogeneity of risk factors, and limited therapeutic options. Artificial intelligence (AI)-based techniques, including machine learning (ML), deep learning (DL), and natural language processing (NLP), can uncover hidden and nonlinear connections among syncope risk factors, disease features, and clinical outcomes. ML, DL, and NLP models can analyze vast amounts of data effectively and assist physicians to help distinguish true syncope from other types of transient loss of consciousness. Additionally, short-term adverse events and length of hospital stay can be predicted by these models. In syncope research, AI-based models shift the focus from causality to correlation analysis between entities. This prompts the search for patterns rather than defining a hypothesis to be tested a priori. Furthermore, education of students, doctors, and health care providers engaged in continuing medical education may benefit from clinical cases of syncope interacting with NLP-based virtual patient simulators. Education may be of benefit to patients. This article explores potential strengths, weaknesses, and proposed solutions associated with utilization of ML and DL in syncope diagnosis and management. Three main topics regarding syncope are addressed: 1) clinical decision-making; 2) clinical research; and 3) education. Within each domain, we question whether "AI will be better than humans," seeking evidence to support our objective inquiry.

摘要

关于晕厥的临床决策面临挑战,由于晕厥病理生理学难以捉摸、表现多样、危险因素异质性以及治疗选择有限,存在医生误诊的风险。基于人工智能(AI)的技术,包括机器学习(ML)、深度学习(DL)和自然语言处理(NLP),可以揭示晕厥危险因素、疾病特征和临床结果之间隐藏的非线性联系。ML、DL和NLP模型可以有效地分析大量数据,并协助医生区分真正的晕厥与其他类型的短暂意识丧失。此外,这些模型还可以预测短期不良事件和住院时间。在晕厥研究中,基于AI的模型将重点从因果关系分析转移到实体之间的相关性分析。这促使人们寻找模式,而不是定义一个需要先验检验的假设。此外,参与继续医学教育的学生、医生和医疗保健提供者的教育可能会受益于与基于NLP的虚拟患者模拟器交互的晕厥临床病例。教育可能对患者有益。本文探讨了在晕厥诊断和管理中使用ML和DL的潜在优势、劣势及提出的解决方案。讨论了关于晕厥的三个主要主题:1)临床决策;2)临床研究;3)教育。在每个领域中,我们都在质疑“AI是否会比人类更好”,并寻求证据来支持我们的客观探究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f200/11450913/5cd565fc29c1/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验