Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada.
Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada.
Sci Total Environ. 2023 Oct 15;895:165095. doi: 10.1016/j.scitotenv.2023.165095. Epub 2023 Jun 23.
As fragments of SARS-CoV-2 RNA can be quantified and measured temporally in wastewater, surveillance of concentrations of SARS-CoV-2 in wastewater has become a vital resource for tracking the spread of COVID-19 in and among communities. However, the absence of standardized methods has affected the interpretation of data for public health efforts. In particular, analyzing either the liquid or solid fraction has implications for the interpretation of how viral RNA is quantified. Characterizing how SARS-CoV-2 or its RNA fragments partition in wastewater is a central part of understanding fate and behaviour in wastewater. In this study, partitioning of SARS-CoV-2 was investigated by use of centrifugation with varied durations of spin and centrifugal force, polyethylene glycol (PEG) precipitation followed by centrifugation, and ultrafiltration of wastewater. Partitioning of the endogenous pepper mild mottled virus (PMMoV), used to normalize the SARS-CoV-2 signal for fecal load in trend analysis, was also examined. Additionally, two surrogates for coronavirus, human coronavirus 229E and murine hepatitis virus, were analyzed as process controls. Even though SARS-CoV-2 has an affinity for solids, the total RNA copies of SARS-CoV-2 per wastewater sample, after centrifugation (12,000 g, 1.5 h, no brake), were partitioned evenly between the liquid and solid fractions. Centrifugation at greater speeds for longer durations resulted in a shift in partitioning for all viruses toward the solid fraction except for PMMoV, which remained mostly in the liquid fraction. The surrogates more closely reflected the partitioning of SARS-CoV-2 under high centrifugation speed and duration while PMMoV did not. Interestingly, ultrafiltration devices were inconsistent in estimating RNA copies in wastewater, which can influence the interpretation of partitioning. Developing a better understanding of the fate of SARS-CoV-2 in wastewater and creating a foundation of best practices is the key to supporting the current pandemic response and preparing for future potential infectious diseases.
由于 SARS-CoV-2 的 RNA 片段可以在废水中进行定量和时间测量,因此对废水中 SARS-CoV-2 浓度的监测已成为跟踪 COVID-19 在社区内和社区间传播的重要资源。然而,缺乏标准化方法影响了公共卫生工作对数据的解释。特别是,分析液体或固体部分会影响对病毒 RNA 定量的解释。描述 SARS-CoV-2 或其 RNA 片段在废水中如何分配是了解废水中命运和行为的核心部分。在这项研究中,通过使用不同时长的离心旋转和离心力、聚乙二醇 (PEG) 沉淀后离心以及超滤处理废水来研究 SARS-CoV-2 的分配情况。还研究了内源性辣椒斑驳病毒 (PMMoV) 的分配情况,PMMoV 用于对趋势分析中粪便负荷的 SARS-CoV-2 信号进行归一化。此外,还分析了两种冠状病毒的替代物,人冠状病毒 229E 和鼠肝炎病毒,作为过程对照。尽管 SARS-CoV-2 对固体有亲和力,但经离心(12,000g,1.5h,无刹车)后,每份废水样品中 SARS-CoV-2 的总 RNA 拷贝均匀分配在液体和固体部分。在更高速度和更长时间下离心会导致所有病毒的分配向固体部分转移,除了 PMMoV,其大部分仍留在液体部分。替代物在高离心速度和时长下更能反映 SARS-CoV-2 的分配情况,而 PMMoV 则不然。有趣的是,超滤设备在估计废水中的 RNA 拷贝时不一致,这会影响分配的解释。更好地了解 SARS-CoV-2 在废水中的命运,并建立最佳实践基础,是支持当前大流行应对和为未来潜在传染病做准备的关键。