Schüller Andreas, Studt-Reinhold Lena, Berger Harald, Silvestrini Lucia, Labuda Roman, Güldener Ulrich, Gorfer Markus, Bacher Markus, Doppler Maria, Gasparotto Erika, Gattesco Arianna, Sulyok Michael, Strauss Joseph
Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus Tulln, Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria.
DGforLife, Operations - Research and Development, Via Albert Einstein, Marcallo c.C., 20010, Milan, Italy.
Fungal Biol Biotechnol. 2023 Jun 24;10(1):13. doi: 10.1186/s40694-023-00158-x.
Fungi are important sources for bioactive compounds that find their applications in many important sectors like in the pharma-, food- or agricultural industries. In an environmental monitoring project for fungi involved in soil nitrogen cycling we also isolated Cephalotrichum gorgonifer (strain NG_p51). In the course of strain characterisation work we found that this strain is able to naturally produce high amounts of rasfonin, a polyketide inducing autophagy, apoptosis, necroptosis in human cell lines and showing anti-tumor activity in KRAS-dependent cancer cells.
In order to elucidate the biosynthetic pathway of rasfonin, the strain was genome sequenced, annotated, submitted to transcriptome analysis and genetic transformation was established. Biosynthetic gene cluster (BGC) prediction revealed the existence of 22 BGCs of which the majority was not expressed under our experimental conditions. In silico prediction revealed two BGCs with a suite of enzymes possibly involved in rasfonin biosynthesis. Experimental verification by gene-knock out of the key enzyme genes showed that one of the predicted BGCs is indeed responsible for rasfonin biosynthesis.
This study identified a biosynthetic gene cluster containing a key-gene responsible for rasfonin production. Additionally, molecular tools were established for the non-model fungus Cephalotrichum gorgonifer which allows strain engineering and heterologous expression of the BGC for high rasfonin producing strains and the biosynthesis of rasfonin derivates for diverse applications.
真菌是生物活性化合物的重要来源,这些化合物在制药、食品或农业等许多重要领域都有应用。在一项关于参与土壤氮循环的真菌的环境监测项目中,我们还分离出了戈氏头孢霉(菌株NG_p51)。在菌株鉴定工作过程中,我们发现该菌株能够自然产生大量的拉斯弗菌素,这是一种聚酮化合物,可诱导人类细胞系发生自噬、凋亡、坏死性凋亡,并在KRAS依赖性癌细胞中显示出抗肿瘤活性。
为了阐明拉斯弗菌素的生物合成途径,对该菌株进行了全基因组测序、注释,进行了转录组分析,并建立了遗传转化体系。生物合成基因簇(BGC)预测显示存在22个BGC,其中大多数在我们的实验条件下不表达。计算机预测显示有两个BGC含有一系列可能参与拉斯弗菌素生物合成的酶。通过敲除关键酶基因进行实验验证,结果表明预测的BGC之一确实负责拉斯弗菌素的生物合成。
本研究鉴定出一个包含负责拉斯弗菌素生产的关键基因的生物合成基因簇。此外,还为非模式真菌戈氏头孢霉建立了分子工具,这使得可以对菌株进行工程改造,并对BGC进行异源表达,以获得高产量拉斯弗菌素的菌株,以及用于各种应用的拉斯弗菌素衍生物的生物合成。