Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4056, Basel, Switzerland.
Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4056, Basel, Switzerland.
Biomaterials. 2024 Jul;308:122560. doi: 10.1016/j.biomaterials.2024.122560. Epub 2024 Apr 1.
Cells assemble fibronectin, the major extracellular matrix (ECM) protein, into fibrillar matrices, which serve as 3D architectural scaffolds to provide, together with other ECM proteins tissue-specific environments. Although recent approaches enable to bioengineer 3D fibrillar fibronectin matrices in vitro, it remains elusive how fibronectin can be co-assembled with other ECM proteins into complex 3D fibrillar matrices that recapitulate tissue-specific compositions and cellular responses. Here, we introduce the engineering of fibrillar fibronectin-templated 3D matrices that can be complemented with other ECM proteins, including vitronectin, collagen, and laminin to resemble ECM architectures observed in vivo. For the co-assembly of different ECM proteins, we employed their innate fibrillogenic mechanisms including shear forces, pH-dependent electrostatic interactions, or specific binding domains. Through recapitulating various tissue-specific ECM compositions and morphologies, the large scale multi-composite 3D fibrillar ECM matrices can guide fibroblast adhesion, 3D fibroblast tissue formation, or tissue morphogenesis of epithelial cells. In other examples, we customize multi-composite 3D fibrillar matrices to support the growth of signal propagating neuronal networks and of human brain organoids. We envision that these 3D fibrillar ECM matrices can be tailored in scale and composition to modulate tissue-specific responses across various biological length scales and systems, and thus to advance manyfold studies of cell biological systems.
细胞将纤维连接蛋白(主要的细胞外基质 [ECM] 蛋白)组装成纤维状基质,这些基质充当 3D 建筑支架,为组织提供具有特定环境的结构。尽管最近的方法能够在体外工程化 3D 纤维状纤维连接蛋白基质,但纤维连接蛋白如何与其他 ECM 蛋白共同组装成复杂的 3D 纤维状基质,以再现组织特异性组成和细胞反应,仍然难以捉摸。在这里,我们介绍了纤维连接蛋白模板化 3D 基质的工程设计,该基质可以与其他 ECM 蛋白(包括纤连蛋白、胶原蛋白和层粘连蛋白)互补,以模拟体内观察到的 ECM 结构。对于不同 ECM 蛋白的共组装,我们利用了它们固有的纤维生成机制,包括剪切力、pH 依赖性静电相互作用或特定结合域。通过再现各种组织特异性 ECM 组成和形态,大规模多复合材料 3D 纤维状 ECM 基质可以指导成纤维细胞的黏附、3D 成纤维细胞组织形成或上皮细胞的组织形态发生。在其他示例中,我们定制多复合材料 3D 纤维状基质以支持信号传播神经元网络和人类脑类器官的生长。我们设想这些 3D 纤维状 ECM 基质可以在规模和组成上进行调整,以调节跨各种生物长度尺度和系统的组织特异性反应,从而推进细胞生物学系统的多倍研究。