Suppr超能文献

用于减轻硫化物基全固态电池中化学机械降解的锂硅合金负极设计策略

Design Strategies of Li-Si Alloy Anode for Mitigating Chemo-Mechanical Degradation in Sulfide-Based All-Solid-State Batteries.

作者信息

Kim Minhyung, Kim Min Ju, Oh Yeong Seon, Kang Sung, Shin Tae Ho, Lim Hyung-Tae

机构信息

Department of Materials Convergence System Engineering, Changwon National University, Changwon, Gyeongnam, 51140, Republic of Korea.

Analysis and Assessment Center, Research Institute of Industrial and Science Technology, Pohang, Gyeongbuk, 37673, Republic of Korea.

出版信息

Adv Sci (Weinh). 2023 Aug;10(24):e2301381. doi: 10.1002/advs.202301381. Epub 2023 Jun 26.

Abstract

Composite anodes of Li PS  glass+Li-Si alloy (Type 1) and Li N+LiF+Li-Si alloy (Type 2) are prepared for all-solid-state batteries with Li PS (LPS) glass electrolyte and sulfur/LPS glass/carbon composite cathode. Using a three-electrode system, the anode and cathode potentials are separated, and their polarization resistances are individually traced. Even under high-cutoff-voltage conditions (3.7 V), Type 1 and 2 cells are stably cycled without voltage noise for >200 cycles. Although cathode polarization resistance drastically increases after 3.7 V charge owing to LPS oxidation, LPS redox behavior is fairly reversible upon discharge-charge unlike the non-composite alloy anode cell. Time-of-flight secondary ion mass spectrometry analysis reveals that the enhanced cyclability is attributed to uniform Li-Si alloying throughout the composite anode, providing more pathways for lithium ions even when these ions are over-supplied via LPS oxidation. These results imply that LPS-based cells can be reversibly cycled with LPS redox even under high-cutoff voltages, as long as non-uniform alloying (lithium dendrite growth) is prevented. Type 1 and 2 cells exhibit similar performance and stability although reduction product is formed in Type 1. This work highlights the importance of alloy anode design to prevent chemo-mechanical failure when cycling the cell outside the electrochemical stability window.

摘要

采用锂磷硫(LPS)玻璃电解质和硫/LPS玻璃/碳复合阴极,制备了用于全固态电池的Li PS玻璃+锂硅合金(1型)和Li N+LiF+锂硅合金(2型)复合阳极。使用三电极系统,将阳极和阴极电位分开,并分别追踪它们的极化电阻。即使在高截止电压条件下(3.7 V),1型和2型电池也能稳定循环>200次,且无电压噪声。尽管由于LPS氧化,阴极极化电阻在3.7 V充电后急剧增加,但与非复合合金阳极电池不同,LPS的氧化还原行为在充放电时相当可逆。飞行时间二次离子质谱分析表明,循环性能的提高归因于复合阳极中均匀的锂硅合金化,即使通过LPS氧化过度供应锂离子,也能为锂离子提供更多路径。这些结果表明,只要防止不均匀合金化(锂枝晶生长),基于LPS的电池即使在高截止电压下也能通过LPS氧化还原进行可逆循环。1型和2型电池表现出相似的性能和稳定性,尽管1型中形成了还原产物。这项工作突出了合金阳极设计在电池在电化学稳定性窗口之外循环时防止化学机械故障的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52cb/10460900/84a71a525a14/ADVS-10-2301381-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验