Suppr超能文献

通过半自主机器学习系统定量分析尿液细胞学标本非典型性,检测膀胱癌复发的纵向标志物。

Examining longitudinal markers of bladder cancer recurrence through a semiautonomous machine learning system for quantifying specimen atypia from urine cytology.

机构信息

Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA.

Department of Dermatology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA.

出版信息

Cancer Cytopathol. 2023 Sep;131(9):561-573. doi: 10.1002/cncy.22725. Epub 2023 Jun 26.

Abstract

BACKGROUND

Urine cytology is generally considered the primary approach for screening for recurrence of bladder cancer. However, it is currently unclear how best to use cytological examinations for assessment and early detection of recurrence, beyond identifying a positive finding that requires more invasive methods to confirm recurrence and decide on therapeutic options. Because screening programs are frequent, and can be burdensome, finding quantitative means to reduce this burden for patients, cytopathologists, and urologists is an important endeavor and can improve both the efficiency and reliability of findings. Additionally, identifying ways to risk-stratify patients is crucial for improving quality of life while reducing the risk of future recurrence or progression of the cancer.

METHODS

In this study, a computational machine learning tool, AutoParis-X, was leveraged to extract imaging features from urine cytology examinations longitudinally to study the predictive potential of urine cytology for assessing recurrence risk. This study examined how the significance of imaging predictors changes over time before and after surgery to determine which predictors and time periods are most relevant for assessing recurrence risk.

RESULTS

Results indicate that imaging predictors extracted using AutoParis-X can predict recurrence as well or better than traditional cytological/histological assessments alone and that the predictiveness of these features is variable across time, with key differences in overall specimen atypia identified immediately before tumor recurrence.

CONCLUSIONS

Further research will clarify how computational methods can be effectively used in high-volume screening programs to improve recurrence detection and complement traditional modes of assessment.

摘要

背景

尿液细胞学通常被认为是筛查膀胱癌复发的主要方法。然而,目前尚不清楚如何最好地利用细胞学检查来评估和早期发现复发,除了识别需要更具侵入性的方法来确认复发并决定治疗方案的阳性发现之外。由于筛查计划频繁且可能带来负担,因此寻找减少患者、细胞病理学家和泌尿科医生负担的定量方法是一项重要的努力,这可以提高发现的效率和可靠性。此外,确定如何对患者进行风险分层对于提高生活质量和降低癌症复发或进展的风险至关重要。

方法

在这项研究中,利用计算机器学习工具 AutoParis-X 从尿液细胞学检查中提取纵向成像特征,以研究尿液细胞学评估复发风险的预测潜力。本研究研究了成像预测因子在手术前后随时间变化的重要性,以确定哪些预测因子和时间段最适合评估复发风险。

结果

结果表明,使用 AutoParis-X 提取的成像预测因子可以与传统的细胞学/组织学评估一样或更好地预测复发,并且这些特征的预测能力随时间变化而变化,在肿瘤复发前立即识别出总体标本非典型性的关键差异。

结论

进一步的研究将阐明计算方法如何在大容量筛查计划中有效使用,以提高复发检测并补充传统的评估模式。

相似文献

本文引用的文献

10
Latent Gaussian Model Boosting.潜在高斯模型增强
IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):1894-1905. doi: 10.1109/TPAMI.2022.3168152. Epub 2023 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验