Suppr超能文献

基于Q学习的无人机搭载基站在灾难场景中的定位,以实现与位置未知用户的连接。

Q-learning-based UAV-mounted base station positioning in a disaster scenario for connectivity to the users located at unknown positions.

作者信息

Mandloi Dilip, Arya Rajeev

机构信息

Department of ECE, National Institute of Technology Patna, Patna, Bihar 800005 India.

出版信息

J Supercomput. 2023 Apr 20:1-32. doi: 10.1007/s11227-023-05292-2.

Abstract

Due to its flexibility, cost-effectiveness, and quick deployment abilities, unmanned aerial vehicle-mounted base station (UmBS) deployment is a promising approach for restoring wireless services in areas devastated by natural disasters such as floods, thunderstorms, and tsunami strikes. However, the biggest challenges in the deployment process of UmBS are ground user equipment's (UE's) position information, UmBS transmit power optimization, and UE-UmBS association. In this article, we propose Localization of ground UEs and their Association with the UmBS (LUAU), an approach that ensures localization of ground UEs and energy-efficient deployment of UmBSs. Unlike existing studies that proposed their work based on the known UEs positional information, we first propose a three-dimensional range-based localization approach (3D-RBL) to estimate the position information of the ground UEs. Subsequently, an optimization problem is formulated to maximize the UE's mean data rate by optimizing the UmBS transmit power and deployment locations while taking the interference from the surrounding UmBSs into consideration. To achieve the goal of the optimization problem, we utilize the exploration and exploitation abilities of the Q-learning framework. Simulation results demonstrate that the proposed approach outperforms two benchmark schemes in terms of the UE's mean data rate and outage percentage.

摘要

由于其灵活性、成本效益和快速部署能力,无人机搭载基站(UmBS)的部署是一种在洪水、雷暴和海啸袭击等自然灾害破坏地区恢复无线服务的有前景的方法。然而,UmBS部署过程中最大的挑战是地面用户设备(UE)的位置信息、UmBS发射功率优化以及UE与UmBS的关联。在本文中,我们提出了地面UE的定位及其与UmBS的关联(LUAU),这是一种确保地面UE定位和UmBS节能部署的方法。与基于已知UE位置信息开展工作的现有研究不同,我们首先提出一种基于三维距离的定位方法(3D-RBL)来估计地面UE的位置信息。随后,通过优化UmBS发射功率和部署位置,同时考虑周围UmBS的干扰,制定一个优化问题,以最大化UE的平均数据速率。为实现优化问题的目标,我们利用Q学习框架的探索和利用能力。仿真结果表明,所提方法在UE平均数据速率和中断百分比方面优于两种基准方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b95/10116485/9241a2131b88/11227_2023_5292_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验