Suppr超能文献

AEGA:基于方差分析和扩展遗传算法的增强特征选择用于在线客户评论分析。

AEGA: enhanced feature selection based on ANOVA and extended genetic algorithm for online customer review analysis.

作者信息

Tripathy Gyananjaya, Sharaff Aakanksha

机构信息

Department of Computer Science and Engineering, National Institute of Technology, Raipur, Chhattisgarh 492010 India.

出版信息

J Supercomput. 2023 Mar 22:1-30. doi: 10.1007/s11227-023-05179-2.

Abstract

Sentiment analysis involves extricating and interpreting people's views, feelings, beliefs, etc., about diverse actualities such as services, goods, and topics. People intend to investigate the users' opinions on the online platform to achieve better performance. Regardless, the high-dimensional feature set in an online review study affects the interpretation of classification. Several studies have implemented different feature selection techniques; however, getting a high accuracy with a very minimal number of features is yet to be accomplished. This paper develops an effective hybrid approach based on an enhanced genetic algorithm (GA) and analysis of variance (ANOVA) to achieve this purpose. To beat the local minima convergence problem, this paper uses a unique two-phase crossover and impressive selection approach, gaining high exploration and fast convergence of the model. The use of ANOVA drastically reduces the feature size to minimize the computational burden of the model. Experiments are performed to estimate the algorithm performance using different conventional classifiers and algorithms like GA, Particle Swarm Optimization (PSO), Recursive Feature Elimination (RFE), Random Forest, ExtraTree, AdaBoost, GradientBoost, and XGBoost. The proposed novel approach gives impressive results using the Amazon Review dataset with an accuracy of 78.60 %, F1 score of 79.38 %, and an average precision of 0.87, and the Restaurant Customer Review dataset with an accuracy of 77.70 %, F1 score of 78.24 %, and average precision of 0.89 as compared to other existing algorithms. The result shows that the proposed model outperforms other algorithms with nearly 45 and 42% fewer features for the Amazon Review and Restaurant Customer Review datasets.

摘要

情感分析涉及提取和解释人们对服务、商品和话题等各种现实情况的观点、感受、信念等。人们旨在调查在线平台上用户的意见,以实现更好的性能。尽管如此,在线评论研究中的高维特征集影响分类的解释。一些研究已经实施了不同的特征选择技术;然而,用极少数量的特征获得高精度尚未实现。本文基于增强遗传算法(GA)和方差分析(ANOVA)开发了一种有效的混合方法来实现这一目的。为了克服局部最小值收敛问题,本文使用了独特的两阶段交叉和令人印象深刻的选择方法,实现了模型的高探索性和快速收敛。方差分析的使用极大地减小了特征规模,以最小化模型的计算负担。使用不同的传统分类器和算法(如GA、粒子群优化(PSO)、递归特征消除(RFE)、随机森林、极端随机树、AdaBoost、梯度提升和XGBoost)进行实验,以评估算法性能。与其他现有算法相比,所提出的新方法在使用亚马逊评论数据集时给出了令人印象深刻的结果,准确率为78.60%,F1分数为79.38%,平均精度为0.87;在使用餐厅客户评论数据集时,准确率为77.70%,F1分数为78.24%,平均精度为0.89。结果表明,对于亚马逊评论和餐厅客户评论数据集,所提出的模型比其他算法性能更优,特征数量减少了近45%和42%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bac/10031171/1ea3d86a37f9/11227_2023_5179_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验