Partamian Hmayag, Jahromi Saeed, Corona Ludovica, Perry M Scott, Tamilia Eleonora, Madsen Joseph R, Bolton Jeffrey, Stone Scellig S D, Pearl Phillip L, Papadelis Christos
Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children's Health Care System, Fort Worth, TX, USA.
Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA.
NPJ Digit Med. 2025 Mar 5;8(1):138. doi: 10.1038/s41746-025-01531-3.
Surgical success for patients with focal drug resistant epilepsy (DRE) relies on accurate localization of the epileptogenic zone (EZ). Currently, no exam delineates this zone unambiguously. Instead, the EZ is approximated by the area where seizures begin, which is identified manually through a tedious process that is prone to errors and biases. More importantly, resection of this area does not always predict good surgical outcome. Here, we propose an artificially intelligent, patient-specific framework that automatically identifies the EZ requiring little to no input from clinicians, without having to wait for a seizure to occur. The framework transforms interictal intracranial electroencephalography data into spatiotemporal representations of brain activity discriminating the interictal epileptogenic network from background activity. The epileptogenic network delineates the EZ with high precision and predicts surgical outcome. Our framework eliminates the need for manual data inspection, reduces prolonged monitoring, and enhances surgical planning for DRE patients.
对于局灶性药物抵抗性癫痫(DRE)患者而言,手术成功依赖于癫痫发作起始区(EZ)的准确定位。目前,尚无检查能明确勾勒出该区域。相反,癫痫发作起始区是通过癫痫发作起始部位来大致确定的,而这是一个通过繁琐过程手动识别的区域,容易出现错误和偏差。更重要的是,切除该区域并不总能预测良好的手术结果。在此,我们提出一个人工智能的、针对个体患者的框架,该框架几乎无需临床医生输入信息就能自动识别癫痫发作起始区,且无需等待癫痫发作。该框架将发作间期颅内脑电图数据转换为脑活动的时空表征,从而将发作间期致痫网络与背景活动区分开来。致痫网络能高精度地勾勒出癫痫发作起始区并预测手术结果。我们的框架无需人工检查数据,减少了长时间监测,并改善了药物抵抗性癫痫患者的手术规划。