文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

针对. 亚属的保护性 RNA 纳米疫苗

Protective RNA nanovaccines against subspecies .

机构信息

Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States.

Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.

出版信息

Front Immunol. 2023 Jun 8;14:1188754. doi: 10.3389/fimmu.2023.1188754. eCollection 2023.


DOI:10.3389/fimmu.2023.1188754
PMID:37359562
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10286238/
Abstract

The induction of an effective immune response is critical for the success of mRNA-based therapeutics. Here, we developed a nanoadjuvant system compromised of Quil-A and DOTAP (dioleoyl 3 trimethylammonium propane), hence named QTAP, for the efficient delivery of mRNA vaccine constructs into cells. Electron microscopy indicated that the complexation of mRNA with QTAP forms nanoparticles with an average size of 75 nm and which have ~90% encapsulation efficiency. The incorporation of pseudouridine-modified mRNA resulted in higher transfection efficiency and protein translation with low cytotoxicity than unmodified mRNA. When QTAP-mRNA or QTAP alone transfected macrophages, pro-inflammatory pathways (e.g., NLRP3, NF-kb, and MyD88) were upregulated, an indication of macrophage activation. In C57Bl/6 mice, QTAP nanovaccines encoding Ag85B and Hsp70 transcripts (QTAP-85B+H70) were able to elicit robust IgG antibody and IFN- ɣ, TNF-α, IL-2, and IL-17 cytokines responses. Following aerosol challenge with a clinical isolate of significant reduction of mycobacterial counts was observed in lungs and spleens of only immunized animals at both 4- and 8-weeks post-challenge. As expected, reduced levels of were associated with diminished histological lesions and robust cell-mediated immunity. Interestingly, polyfunctional T-cells expressing IFN- ɣ, IL-2, and TNF- α were detected at 8 but not 4 weeks post-challenge. Overall, our analysis indicated that QTAP is a highly efficient transfection agent and could improve the immunogenicity of mRNA vaccines against pulmonary , an infection of significant public health importance, especially to the elderly and to those who are immune compromised.

摘要

有效的免疫应答诱导对于基于 mRNA 的治疗药物的成功至关重要。在这里,我们开发了一种由 Quil-A 和 DOTAP(二油酰基 3 三甲基铵丙烷)组成的纳米佐剂系统,因此将其命名为 QTAP,用于将 mRNA 疫苗构建体有效递送至细胞。电子显微镜表明,mRNA 与 QTAP 的复合物形成平均大小为 75nm 的纳米颗粒,其包封效率约为 90%。与未修饰的 mRNA 相比,包含假尿嘧啶修饰的 mRNA 可提高转染效率和蛋白翻译,同时细胞毒性较低。当 QTAP-mRNA 或 QTAP 单独转染巨噬细胞时,促炎途径(例如 NLRP3、NF-kb 和 MyD88)上调,表明巨噬细胞被激活。在 C57Bl/6 小鼠中,编码 Ag85B 和 Hsp70 转录物的 QTAP 纳米疫苗(QTAP-85B+H70)能够引发强烈的 IgG 抗体和 IFN-γ、TNF-α、IL-2 和 IL-17 细胞因子反应。在气溶胶挑战后,仅在免疫动物的肺部和脾脏中观察到临床分离株的细菌计数显著减少,在挑战后 4 周和 8 周均观察到这一现象。正如预期的那样,与组织学病变减轻和强大的细胞介导免疫相关的是 水平降低。有趣的是,在 8 周而不是 4 周时检测到表达 IFN-γ、IL-2 和 TNF-α 的多功能 T 细胞。总体而言,我们的分析表明,QTAP 是一种高效的转染剂,可以提高针对肺部 的 mRNA 疫苗的免疫原性,这是一种具有重要公共卫生意义的感染,尤其是对老年人和免疫功能低下的人。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2722/10286238/4f9224590d6e/fimmu-14-1188754-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2722/10286238/69e4b6bafafe/fimmu-14-1188754-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2722/10286238/f35a5d87f5ab/fimmu-14-1188754-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2722/10286238/339d07a5b06f/fimmu-14-1188754-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2722/10286238/aa91b2fdc43c/fimmu-14-1188754-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2722/10286238/c81fb020293d/fimmu-14-1188754-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2722/10286238/c8e41ff71580/fimmu-14-1188754-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2722/10286238/4f9224590d6e/fimmu-14-1188754-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2722/10286238/69e4b6bafafe/fimmu-14-1188754-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2722/10286238/f35a5d87f5ab/fimmu-14-1188754-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2722/10286238/339d07a5b06f/fimmu-14-1188754-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2722/10286238/aa91b2fdc43c/fimmu-14-1188754-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2722/10286238/c81fb020293d/fimmu-14-1188754-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2722/10286238/c8e41ff71580/fimmu-14-1188754-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2722/10286238/4f9224590d6e/fimmu-14-1188754-g007.jpg

相似文献

[1]
Protective RNA nanovaccines against subspecies .

Front Immunol. 2023

[2]
Different immune response of pigs to Mycobacterium avium subsp. avium and Mycobacterium avium subsp. hominissuis infection.

Vet Microbiol. 2012-4-6

[3]
The Tumor Necrosis Factor Alpha and Interleukin 6 Auto-paracrine Signaling Loop Controls Mycobacterium avium Infection via Induction of IRF1/IRG1 in Human Primary Macrophages.

mBio. 2021-10-26

[4]
-Vectored Multiantigenic Tuberculosis Vaccine Enhances Protective Immunity against Aerosol Challenge with Virulent Mycobacterium tuberculosis in BCG-Immunized C57BL/6 and BALB/c Mice.

mBio. 2022-6-28

[5]
Plasmid interleukin-23 (IL-23), but not plasmid IL-27, enhances the protective efficacy of a DNA vaccine against Mycobacterium tuberculosis infection.

Infect Immun. 2006-1

[6]
[Strategies for Mycobacterium avium complex infection control in Japan: how do they improve the present situation?].

Kekkaku. 2013-3

[7]
[Frontier of mycobacterium research--host vs. mycobacterium].

Kekkaku. 2005-9

[8]
[Novel vaccines against M. tuberculosis].

Kekkaku. 2006-12

[9]
The combination of plasmid interleukin-12 with a single DNA vaccine is more effective than Mycobacterium bovis (bacille Calmette-Guèrin) in protecting against systemic Mycobacterim avium infection.

Immunology. 2003-6

[10]
Immune responses and protective efficacy of the gene vaccine expressing Ag85B and ESAT6 fusion protein from Mycobacterium tuberculosis.

DNA Cell Biol. 2008-4

引用本文的文献

[1]
Immunity Against Induced by DAR-901 and BCG.

Vaccines (Basel). 2025-6-7

[2]
Current Progress in the Development of mRNA Vaccines Against Bacterial Infections.

Int J Mol Sci. 2024-12-6

[3]
Leveraging high-throughput screening technologies in targeted mRNA delivery.

Mater Today Bio. 2024-5-29

[4]
Cancer/Testis Antigens as Targets for RNA-Based Anticancer Therapy.

Int J Mol Sci. 2023-9-28

本文引用的文献

[1]
A DNA Prime and MVA Boost Strategy Provides a Robust Immunity against Infectious Bronchitis Virus in Chickens.

Vaccines (Basel). 2023-1-30

[2]
Protective efficacy induced by rhomboid-like protein 1 against homologous infection.

Front Vet Sci. 2023-1-4

[3]
An RNA-Based Vaccine Platform for Use against .

Vaccines (Basel). 2023-1-5

[4]
Evaluation of Two Adjuvant Formulations for an Inactivated Yellow Fever 17DD Vaccine Candidate in Mice.

Vaccines (Basel). 2022-12-28

[5]
Immunogenicity and protection against Mycobacterium avium with a heterologous RNA prime and protein boost vaccine regimen.

Tuberculosis (Edinb). 2023-1

[6]
Superinfection with SARS-CoV-2 Has Deleterious Effects on Mycobacterium bovis BCG Immunity and Promotes Dissemination of Mycobacterium tuberculosis.

Microbiol Spectr. 2022-10-26

[7]
The role of lipid components in lipid nanoparticles for vaccines and gene therapy.

Adv Drug Deliv Rev. 2022-9

[8]
Lipid nanoparticles in the development of mRNA vaccines for COVID-19.

J Drug Deliv Sci Technol. 2022-8

[9]
A Biopharmaceutical Perspective on Higher-Order Structure and Thermal Stability of mRNA Vaccines.

Mol Pharm. 2022-7-4

[10]
An Immunoinformatic Strategy to Develop New Multi-epitope Vaccine.

Int J Pept Res Ther. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索