Suppr超能文献

一种用于具有非光滑数据的时间分数阶扩散方程的改进时空稀疏网格上的高效数值方法。

An efficient numerical method on modified space-time sparse grid for time-fractional diffusion equation with nonsmooth data.

作者信息

Zhu Bi-Yun, Xiao Ai-Guo, Li Xue-Yang

机构信息

School of Mathematics and Computational Science & National Center for Applied Mathematics in Hunan & Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105 China.

出版信息

Numer Algorithms. 2023 May 11:1-36. doi: 10.1007/s11075-023-01547-4.

Abstract

In this paper, we focus on developing a high efficient algorithm for solving -dimension time-fractional diffusion equation (TFDE). For TFDE, the initial function or source term is usually not smooth, which can lead to the low regularity of exact solution. And such low regularity has a marked impact on the convergence rate of numerical method. In order to improve the convergence rate of the algorithm, we introduce the space-time sparse grid (STSG) method to solve TFDE. In our study, we employ the sine basis and the linear element basis for spatial discretization and temporal discretization, respectively. The sine basis can be divided into several levels, and the linear element basis can lead to the hierarchical basis. Then, the STSG can be constructed through a special tensor product of the spatial multilevel basis and the temporal hierarchical basis. Under certain conditions, the function approximation on standard STSG can achieve the accuracy order with degrees of freedom (DOF) for and DOF for , where denotes the maximal level of sine coefficients. However, if the solution changes very rapidly at the initial moment, the standard STSG method may reduce accuracy or even fail to converge. To overcome this, we integrate the full grid into the STSG, and obtain the modified STSG. Finally, we obtain the fully discrete scheme of STSG method for solving TFDE. The great advantage of the modified STSG method can be shown in the comparative numerical experiment.

摘要

在本文中,我们专注于开发一种用于求解(n)维时间分数阶扩散方程(TFDE)的高效算法。对于TFDE,初始函数或源项通常不光滑,这可能导致精确解的正则性较低。而这种低正则性对数值方法的收敛速度有显著影响。为了提高算法的收敛速度,我们引入时空稀疏网格(STSG)方法来求解TFDE。在我们的研究中,我们分别采用正弦基和线性单元基进行空间离散化和时间离散化。正弦基可分为几个层次,线性单元基可导致分层基。然后,通过空间多级基和时间分层基的特殊张量积来构造STSG。在一定条件下,标准STSG上的函数逼近对于(d)维问题在自由度(DOF)为(N)时可达到精度阶(O(N^{-s})),对于(d + 1)维问题在自由度为(N)时可达到精度阶(O(N^{-s})),其中(s)表示正弦系数的最大层次。然而,如果解在初始时刻变化非常迅速,标准STSG方法可能会降低精度甚至无法收敛。为克服这一问题,我们将全网格集成到STSG中,得到改进的STSG。最后,我们得到了用于求解TFDE的STSG方法的全离散格式。改进的STSG方法的巨大优势可在对比数值实验中体现出来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6fc/10172732/157e553f5da7/11075_2023_1547_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验