Suppr超能文献

一种基于随机主体的模型,用于评估受人员流动影响的新冠病毒传播情况。

A stochastic agent-based model to evaluate COVID-19 transmission influenced by human mobility.

作者信息

Chen Kejie, Jiang Xiaomo, Li Yanqing, Zhou Rongxin

机构信息

School of Optoelectric Engineering and Instrumental Science, Dalian University of Technology, Dalian, 116024 China.

Provincial Key Lab of Digital Twin for Industrial Equipment, Dalian, 116024 China.

出版信息

Nonlinear Dyn. 2023 Apr 29:1-17. doi: 10.1007/s11071-023-08489-5.

Abstract

UNLABELLED

The COVID-19 pandemic has created an urgent need for mathematical models that can project epidemic trends and evaluate the effectiveness of mitigation strategies. A major challenge in forecasting the transmission of COVID-19 is the accurate assessment of the multiscale human mobility and how it impacts infection through close contacts. By combining the stochastic agent-based modeling strategy and hierarchical structures of spatial containers corresponding to the notion of geographical places, this study proposes a novel model, Mob-Cov, to study the impact of human traveling behavior and individual health conditions on the disease outbreak and the probability of zero-COVID in the population. Specifically, individuals perform power law-type local movements within a container and global transport between different-level containers. It is revealed that frequent long-distance movements inside a small-level container (e.g., a road or a county) and a small population size reduce both the local crowdedness and disease transmission. It takes only half of the time to induce global disease outbreaks when the population increases from 150 to 500 (normalized unit). When the exponent of the long-tail distribution of distance moved in the same-level container, , increases, the outbreak time decreases rapidly from 75 to 25 (normalized unit). In contrast, travel between large-level containers (e.g., cities and nations) facilitates global spread of the disease and outbreak. When the mean traveling distance across containers increases from 0.5 to 1 (normalized unit), the outbreak occurs almost twice as fast. Moreover, dynamic infection and recovery in the population are able to drive the bifurcation of the system to a "zero-COVID" state or to a "live with COVID" state, depending on the mobility patterns, population number and health conditions. Reducing population size and restricting global travel help achieve zero-COVID-19. Specifically, when is smaller than 0.2, the ratio of people with low levels of mobility is larger than 80% and the population size is smaller than 400, zero-COVID can be achieved within fewer than 1000 time steps. In summary, the Mob-Cov model considers more realistic human mobility at a wide range of spatial scales, and has been designed with equal emphasis on performance, low simulation cost, accuracy, ease of use and flexibility. It is a useful tool for researchers and politicians to apply when investigating pandemic dynamics and when planning actions against disease.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s11071-023-08489-5.

摘要

未标注

新冠疫情使得迫切需要能够预测疫情趋势并评估缓解策略有效性的数学模型。预测新冠病毒传播的一个主要挑战是准确评估多尺度的人类流动性以及它如何通过密切接触影响感染情况。通过结合基于随机主体的建模策略和与地理区域概念相对应的空间容器层次结构,本研究提出了一种新颖的模型Mob-Cov,以研究人类出行行为和个体健康状况对疾病爆发以及人群中实现新冠清零概率的影响。具体而言,个体在一个容器内进行幂律型局部移动,并在不同层级的容器之间进行全局运输。研究表明,在小层级容器(如道路或县)内频繁的长途移动以及较小的人口规模会降低局部拥挤程度和疾病传播。当人口从150增加到500(归一化单位)时,引发全球疾病爆发所需时间仅为原来的一半。当在同一层级容器中移动距离的长尾分布指数增加时,爆发时间从75迅速减少到25(归一化单位)。相比之下,在大层级容器(如城市和国家)之间的旅行则促进了疾病的全球传播和爆发。当跨容器的平均移动距离从0.5增加到1(归一化单位)时,爆发速度几乎快了一倍。此外,人群中的动态感染和康复能够根据流动性模式、人口数量和健康状况将系统的分岔驱动到“新冠清零”状态或“与新冠共存”状态。减少人口规模和限制全球旅行有助于实现新冠清零。具体而言,当小于0.2,流动性低水平人群的比例大于80%且人口规模小于400时,在少于1000个时间步长内即可实现新冠清零。总之,Mob-Cov模型考虑了更现实的广泛空间尺度上的人类流动性,并且在设计上同等重视性能、低模拟成本、准确性、易用性和灵活性。它是研究人员和政策制定者在研究疫情动态和规划疾病应对行动时的有用工具。

补充信息

在线版本包含可在10.1007/s11071-023-08489-5获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/555c/10148626/d36999823a70/11071_2023_8489_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验