Suppr超能文献

通过文本处理与深度学习融合优化医疗保健系统:一项系统综述

Optimizing healthcare system by amalgamation of text processing and deep learning: a systematic review.

作者信息

Rani Somiya, Jain Amita

机构信息

Department of Computer Science and Engineering, NSUT East Campus (erstwhile AIACTR), Affiliated to Guru Gobind Singh Indraprastha University, Delhi, India.

Department of Computer Science and Engineering, Netaji Subhas University of Technology, Delhi, India.

出版信息

Multimed Tools Appl. 2023 May 15:1-25. doi: 10.1007/s11042-023-15539-y.

Abstract

The explosion of clinical textual data has drawn the attention of researchers. Owing to the abundance of clinical data, it is becoming difficult for healthcare professionals to take real-time measures. The tools and methods are lacking when compared to the amount of clinical data generated every day. This review aims to survey the text processing pipeline with deep learning methods such as CNN, RNN, LSTM, and GRU in the healthcare domain and discuss various applications such as clinical concept detection and extraction, medically aware dialogue systems, sentiment analysis of drug reviews shared online, clinical trial matching, and pharmacovigilance. In addition, we highlighted the major challenges in deploying text processing with deep learning to clinical textual data and identified the scope of research in this domain. Furthermore, we have discussed various resources that can be used in the future to optimize the healthcare domain by amalgamating text processing and deep learning.

摘要

临床文本数据的爆炸式增长引起了研究人员的关注。由于临床数据丰富,医疗保健专业人员难以采取实时措施。与每天生成的临床数据量相比,工具和方法匮乏。本综述旨在调查医疗保健领域中使用CNN、RNN、LSTM和GRU等深度学习方法的文本处理流程,并讨论各种应用,如临床概念检测与提取、医学感知对话系统、在线分享的药物评论情感分析、临床试验匹配和药物警戒。此外,我们强调了将深度学习文本处理应用于临床文本数据时面临的主要挑战,并确定了该领域的研究范围。此外,我们还讨论了未来可用于通过融合文本处理和深度学习来优化医疗保健领域的各种资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e524/10183315/aa90238911b8/11042_2023_15539_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验