Suppr超能文献

TopNEXt:用于多样本质谱实验的自动 DDA 排除框架。

TopNEXt: automatic DDA exclusion framework for multi-sample mass spectrometry experiments.

机构信息

School of Computing Science, University of Glasgow, Glasgow G12 8RZ, United Kingdom.

Glasgow Polyomics, University of Glasgow, Glasgow G61 1BD, United Kingdom.

出版信息

Bioinformatics. 2023 Jul 1;39(7). doi: 10.1093/bioinformatics/btad406.

Abstract

MOTIVATION

Liquid Chromatography Tandem Mass Spectrometry experiments aim to produce high-quality fragmentation spectra, which can be used to annotate metabolites. However, current Data-Dependent Acquisition approaches may fail to collect spectra of sufficient quality and quantity for experimental outcomes, and extend poorly across multiple samples by failing to share information across samples or by requiring manual expert input.

RESULTS

We present TopNEXt, a real-time scan prioritization framework that improves data acquisition in multi-sample Liquid Chromatography Tandem Mass Spectrometry metabolomics experiments. TopNEXt extends traditional Data-Dependent Acquisition exclusion methods across multiple samples by using a Region of Interest and intensity-based scoring system. Through both simulated and lab experiments, we show that methods incorporating these novel concepts acquire fragmentation spectra for an additional 10% of our set of target peaks and with an additional 20% of acquisition intensity. By increasing the quality and quantity of fragmentation spectra, TopNEXt can help improve metabolite identification with a potential impact across a variety of experimental contexts.

AVAILABILITY AND IMPLEMENTATION

TopNEXt is implemented as part of the ViMMS framework and the latest version can be found at https://github.com/glasgowcompbio/vimms. A stable version used to produce our results can be found at 10.5281/zenodo.7468914.

摘要

动机

液相色谱串联质谱实验旨在产生高质量的碎片谱,可用于注释代谢物。然而,目前的数据依赖采集方法可能无法收集到足够质量和数量的谱,并且在多个样本中扩展效果不佳,无法在样本之间共享信息,或者需要手动专家输入。

结果

我们提出了 TopNEXt,这是一种实时扫描优先级框架,可改善多样本液相色谱串联质谱代谢组学实验中的数据采集。TopNEXt 通过使用感兴趣区域和基于强度的评分系统,将传统的数据依赖采集排除方法扩展到多个样本。通过模拟和实验室实验,我们表明,结合这些新概念的方法可以为我们的目标峰集获取另外 10%的碎片谱,并增加 20%的采集强度。通过提高碎片谱的质量和数量,TopNEXt 可以帮助改善代谢物的鉴定,在各种实验环境中都具有潜在的影响。

可用性和实现

TopNEXt 作为 ViMMS 框架的一部分实现,最新版本可在 https://github.com/glasgowcompbio/vimms 上找到。用于生成我们结果的稳定版本可在 10.5281/zenodo.7468914 上找到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0532/10336026/b8e114e4818f/btad406f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验