Suppr超能文献

通过基于数据集的采集实现复杂样本的全面串联质谱覆盖。

Comprehensive Tandem-Mass-Spectrometry Coverage of Complex Samples Enabled by Data-Set-Dependent Acquisition.

机构信息

Proteomics and Metabolomics Facility , Colorado State University , C-121 Microbiology Building 2021 Campus Delivery , Fort Collins , Colorado 80523 , United States.

Waters Corporation , Altrincham Road , Wilmslow SK9 4AX , U.K.

出版信息

Anal Chem. 2018 Jul 3;90(13):8020-8027. doi: 10.1021/acs.analchem.8b00929. Epub 2018 Jun 15.

Abstract

Tandem mass spectrometry (MS/MS) is an invaluable experimental tool for providing analytical data supporting the identification of small molecules and peptides in mass-spectrometry-based "omics" experiments. Data-dependent MS/MS (DDA) is a real-time MS/MS-acquisition strategy that is responsive to the signals detected in a given sample. However, in analysis of even moderately complex samples with state-of-the-art instrumentation, the speed of MS/MS acquisition is insufficient to offer comprehensive MS/MS coverage of all detected molecules. Data-independent approaches (DIA) offer greater MS/MS coverage, typically at the expense of selectivity or sensitivity. This report describes data-set-dependent MS/MS (DsDA), a novel integration of MS1-data processing and target prioritization to enable comprehensive MS/MS sampling during the initial MS-level experiment. This approach is guided by the premise that in omics experiments, individual injections are typically made as part of a larger set of samples, and feedback between data processing and data acquisition can allow approximately real-time optimization of MS/MS-acquisition parameters and nearly complete MS/MS-sampling coverage. Using a combination of R, Proteowizard, XCMS, and WRENS software, this concept was implemented on a liquid-chromatograph-coupled quadrupole time-of-flight mass spectrometer. The results illustrate comprehensive MS/MS coverage for a set of complex small-molecule samples and demonstrate a strong improvement on traditional DDA.

摘要

串联质谱(MS/MS)是一种非常有价值的实验工具,可提供支持基于质谱的“组学”实验中小分子和肽鉴定的分析数据。数据依赖型 MS/MS(DDA)是一种实时 MS/MS 采集策略,对给定样品中检测到的信号做出响应。然而,即使使用最先进的仪器分析中等复杂程度的样品,MS/MS 的采集速度也不足以提供所有检测到分子的全面 MS/MS 覆盖。非数据依赖型方法(DIA)提供更大的 MS/MS 覆盖范围,但通常以选择性或灵敏度为代价。本报告描述了基于数据集的 MS/MS(DsDA),这是一种将 MS1 数据处理和目标优先级集成在一起的新方法,可在初始 MS 水平实验期间实现全面的 MS/MS 采样。该方法的前提是在组学实验中,单个进样通常是作为更大的一组样品的一部分进行的,数据处理和数据采集之间的反馈可以允许大约实时优化 MS/MS 采集参数,并实现几乎完全的 MS/MS 采样覆盖。该概念使用 R、Proteowizard、XCMS 和 WRENS 软件的组合在液相色谱-四极杆飞行时间质谱仪上实现。结果说明了一组复杂小分子样品的全面 MS/MS 覆盖范围,并证明了对传统 DDA 的显著改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验