Suppr超能文献

用于引导骨再生的纳米级β-TCP 负载 GelMA/PCL 复合膜

Nanoscale β-TCP-Laden GelMA/PCL Composite Membrane for Guided Bone Regeneration.

机构信息

Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States.

Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 999077 Hong Kong, China.

出版信息

ACS Appl Mater Interfaces. 2023 Jul 12;15(27):32121-32135. doi: 10.1021/acsami.3c03059. Epub 2023 Jun 26.

Abstract

Major advances in the field of periodontal tissue engineering have favored the fabrication of biodegradable membranes with tunable physical and biological properties for guided bone regeneration (GBR). Herein, we engineered innovative nanoscale beta-tricalcium phosphate (β-TCP)-laden gelatin methacryloyl/polycaprolactone (GelMA/PCL-TCP) photocrosslinkable composite fibrous membranes via electrospinning. Chemo-morphological findings showed that the composite microfibers had a uniform porous network and β-TCP particles successfully integrated within the fibers. Compared with pure PCL and GelMA/PCL, GelMA/PCL-TCP membranes led to increased cell attachment, proliferation, mineralization, and osteogenic gene expression in alveolar bone-derived mesenchymal stem cells (aBMSCs). Moreover, our GelMA/PCL-TCP membrane was able to promote robust bone regeneration in rat calvarial critical-size defects, showing remarkable osteogenesis compared to PCL and GelMA/PCL groups. Altogether, the GelMA/PCL-TCP composite fibrous membrane promoted osteogenic differentiation of aBMSCs in vitro and pronounced bone formation in vivo. Our data confirmed that the electrospun GelMA/PCL-TCP composite has a strong potential as a promising membrane for guided bone regeneration.

摘要

牙周组织工程领域的重大进展促进了可生物降解膜的制造,这些膜具有可调的物理和生物学特性,可用于引导骨再生(GBR)。在此,我们通过静电纺丝设计了具有创新性的纳米级β-磷酸三钙(β-TCP)负载明胶甲基丙烯酰基/聚己内酯(GelMA/PCL-TCP)光交联复合纤维膜。化学形态学研究结果表明,复合微纤维具有均匀的多孔网络,并且β-TCP 颗粒成功地整合在纤维内。与纯 PCL 和 GelMA/PCL 相比,GelMA/PCL-TCP 膜促进了牙槽骨来源间充质干细胞(aBMSCs)的细胞附着、增殖、矿化和成骨基因表达。此外,我们的 GelMA/PCL-TCP 膜能够在大鼠颅骨临界尺寸缺损中促进强大的骨再生,与 PCL 和 GelMA/PCL 组相比,表现出显著的成骨作用。总的来说,GelMA/PCL-TCP 复合纤维膜促进了 aBMSCs 的体外成骨分化,并在体内显著促进了骨形成。我们的数据证实,静电纺丝的 GelMA/PCL-TCP 复合材料具有作为一种有前途的引导骨再生膜的强大潜力。

相似文献

1
Nanoscale β-TCP-Laden GelMA/PCL Composite Membrane for Guided Bone Regeneration.
ACS Appl Mater Interfaces. 2023 Jul 12;15(27):32121-32135. doi: 10.1021/acsami.3c03059. Epub 2023 Jun 26.
3
Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration.
J Biomater Sci Polym Ed. 2019 Nov;30(16):1505-1522. doi: 10.1080/09205063.2019.1646628. Epub 2019 Aug 13.
4
Efficacy of rhBMP-2 Loaded PCL/-TCP/bdECM Scaffold Fabricated by 3D Printing Technology on Bone Regeneration.
Biomed Res Int. 2018 Feb 27;2018:2876135. doi: 10.1155/2018/2876135. eCollection 2018.
6
3D-printed PCL/β-TCP/CS composite artificial bone and histocompatibility study.
J Orthop Surg Res. 2023 Dec 21;18(1):981. doi: 10.1186/s13018-023-04489-8.
8
GelMA/TCP nanocomposite scaffold for vital pulp therapy.
Acta Biomater. 2024 Jan 1;173:495-508. doi: 10.1016/j.actbio.2023.11.005. Epub 2023 Nov 7.

引用本文的文献

2
Enhancing Bone Repair with β-TCP-Based Composite Scaffolds: A Review of Design Strategies and Biological Mechanisms.
Orthop Res Rev. 2025 Jul 14;17:313-340. doi: 10.2147/ORR.S525959. eCollection 2025.
3
Dexamethasone/β-cyclodextrin inclusion complex hydrogel for vital pulp therapy.
Odontology. 2025 Jul 9. doi: 10.1007/s10266-025-01146-w.
4
6
Addressing the challenges of infectious bone defects: a review of recent advances in bifunctional biomaterials.
J Nanobiotechnology. 2025 Mar 29;23(1):257. doi: 10.1186/s12951-025-03295-0.
7
Melt electrowriting of bioglass-laden poly(ε-caprolactone) scaffolds for bone regeneration.
J Mater Chem B. 2025 Mar 20;13(12):3864-3875. doi: 10.1039/d4tb02835j.
8
Niche-inspired collagen infused melt electrowritten scaffolds for craniofacial bone regeneration.
Biomater Adv. 2025 May;170:214222. doi: 10.1016/j.bioadv.2025.214222. Epub 2025 Feb 6.
10
Personalized bioceramic grafts for craniomaxillofacial bone regeneration.
Int J Oral Sci. 2024 Oct 31;16(1):62. doi: 10.1038/s41368-024-00327-7.

本文引用的文献

1
Engineering of an Osteoinductive and Growth Factor-Free Injectable Bone-Like Microgel for Bone Regeneration.
Adv Healthc Mater. 2023 Apr;12(11):e2200976. doi: 10.1002/adhm.202200976. Epub 2023 Mar 7.
2
Advanced biomaterials for periodontal tissue regeneration.
Genesis. 2022 Sep;60(8-9):e23501. doi: 10.1002/dvg.23501. Epub 2022 Sep 16.
3
Innovations in Craniofacial Bone and Periodontal Tissue Engineering - From Electrospinning to Converged Biofabrication.
Int Mater Rev. 2022;67(4):347-384. doi: 10.1080/09506608.2021.1946236. Epub 2021 Jul 5.
4
Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration.
RSC Adv. 2019 Jun 5;9(31):17737-17744. doi: 10.1039/c9ra02695a. eCollection 2019 Jun 4.
6
Injectable Multifunctional Drug Delivery System for Hard Tissue Regeneration under Inflammatory Microenvironments.
ACS Appl Bio Mater. 2021 Sep 20;4(9):6993-7006. doi: 10.1021/acsabm.1c00620. Epub 2021 Aug 27.
7
Current Concepts in the Management of Periodontitis.
Int Dent J. 2021 Dec;71(6):462-476. doi: 10.1111/idj.12630. Epub 2021 Feb 19.
10
Barrier membranes for tissue regeneration in dentistry.
Biomater Investig Dent. 2021 May 20;8(1):54-63. doi: 10.1080/26415275.2021.1925556.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验