Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil.
Int J Oral Sci. 2024 Oct 31;16(1):62. doi: 10.1038/s41368-024-00327-7.
The reconstruction of craniomaxillofacial bone defects remains clinically challenging. To date, autogenous grafts are considered the gold standard but present critical drawbacks. These shortcomings have driven recent research on craniomaxillofacial bone reconstruction to focus on synthetic grafts with distinct materials and fabrication techniques. Among the various fabrication methods, additive manufacturing (AM) has shown significant clinical potential. AM technologies build three-dimensional (3D) objects with personalized geometry customizable from a computer-aided design. These layer-by-layer 3D biomaterial structures can support bone formation by guiding cell migration/proliferation, osteogenesis, and angiogenesis. Additionally, these structures can be engineered to degrade concomitantly with the new bone tissue formation, making them ideal as synthetic grafts. This review delves into the key advances of bioceramic grafts/scaffolds obtained by 3D printing for personalized craniomaxillofacial bone reconstruction. In this regard, clinically relevant topics such as ceramic-based biomaterials, graft/scaffold characteristics (macro/micro-features), material extrusion-based 3D printing, and the step-by-step workflow to engineer personalized bioceramic grafts are discussed. Importantly, in vitro models are highlighted in conjunction with a thorough examination of the signaling pathways reported when investigating these bioceramics and their effect on cellular response/behavior. Lastly, we summarize the clinical potential and translation opportunities of personalized bioceramics for craniomaxillofacial bone regeneration.
颅颌面骨缺损的重建仍然具有临床挑战性。迄今为止,自体移植物被认为是金标准,但存在关键缺陷。这些缺点促使最近对颅颌面骨重建的研究集中在具有独特材料和制造技术的合成移植物上。在各种制造方法中,增材制造 (AM) 显示出了显著的临床潜力。AM 技术使用可从计算机辅助设计中定制的个性化几何形状构建三维 (3D) 物体。这些逐层的 3D 生物材料结构可以通过引导细胞迁移/增殖、成骨和血管生成来支持骨形成。此外,这些结构可以设计为与新骨组织形成同时降解,使其成为理想的合成移植物。本文深入探讨了通过 3D 打印获得的用于个性化颅颌面骨重建的生物陶瓷移植物/支架的关键进展。在这方面,讨论了与临床相关的主题,如基于陶瓷的生物材料、移植物/支架的特性(宏观/微观特征)、基于材料挤出的 3D 打印以及工程个性化生物陶瓷移植物的逐步工作流程。重要的是,强调了体外模型,并结合报告的这些生物陶瓷及其对细胞反应/行为影响的信号通路进行了详细检查。最后,我们总结了个性化生物陶瓷在颅颌面骨再生中的临床潜力和转化机会。